
1

Lecture 10: Multithreading and

Parallel Programming (Ch 32)

Adapted by Fangzhen Lin for COMP3021 from Y.

Danial Liang’s PowerPoints for Introduction to

Java Programming, Comprehensive Version, 9/E,

Pearson, 2013.

2

Objectives
 To get an overview of multithreading (§32.2).

 To develop task classes by implementing the Runnable interface (§32.3).

 To create threads to run tasks using the Thread class (§32.3).

 To control threads using the methods in the Thread class (§32.4).

 To control animations using threads (§32.5, §32.7).

 To run code in the event dispatch thread (§32.6).

 To execute tasks in a thread pool (§32.8).

 To use synchronized methods or blocks to synchronize threads to avoid race conditions
(§32.9).

 To synchronize threads using locks (§32.10).

 To facilitate thread communications using conditions on locks (§§32.11-32.12).

 To use blocking queues to synchronize access to an array queue, linked queue, and
priority queue (§32.13).

 To restrict the number of accesses to a shared resource using semaphores (§32.14).

 To use the resource-ordering technique to avoid deadlocks (§32.15).

 To describe the life cycle of a thread (§32.16).

 To create synchronized collections using the static methods in the Collections class
(§32.17).

 To develop parallel programs using the Fork/Join Framework (§32.18).

 To run time-consuming tasks in a SwingWorker rather than in the event dispatch thread
(§32.19).

 To display the completion status of a task using JProgressBar (§32.20).

3

Threads Concept

Multiple

threads on

multiple

CPUs

Multiple

threads

sharing a

single CPU

Thread 3

Thread 2

Thread 1

Thread 3

Thread 2

Thread 1

4

Creating Tasks and Threads

// Custom task class

public class TaskClass implements Runnable {

 ...

 public TaskClass(...) {

 ...

 }

 // Implement the run method in Runnable

 public void run() {

 // Tell system how to run custom thread

 ...

 }

 ...

}

// Client class

public class Client {

 ...

 public void someMethod() {

 ...

 // Create an instance of TaskClass

 TaskClass task = new TaskClass(...);

 // Create a thread

 Thread thread = new Thread(task);

 // Start a thread

 thread.start();

 ...

 }

 ...

}

java.lang.Runnable

TaskClass

5

Example:

Using the Runnable Interface to

Create and Launch Threads

Objective: Create and run three threads:

– The first thread prints the letter a 100 times.

– The second thread prints the letter b 100

times.

– The third thread prints the integers 1 through

100.

TaskThreadDemo

http://course.cs.ust.hk/comp3021/slides/html/TaskThreadDemo.html

run()

The run() methods in a task class specifies

how to perform the task. It’s automatically

invoked by JVM when a thread is started.

You should not invoke it: doing so merely

executes this method in the same thread; no

new thread is started.

6

7

The Thread Class

java.lang.Thread

+Thread()

+Thread(task: Runnable)

+start(): void

+isAlive(): boolean

+setPriority(p: int): void

+join(): void

+sleep(millis: long): void

+yield(): void

+interrupt(): void

Creates a default thread.

Creates a thread for a specified task.

Starts the thread that causes the run() method to be invoked by the JVM.

Tests whether the thread is currently running.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to finish.

Puts the runnable object to sleep for a specified time in milliseconds.

Causes this thread to temporarily pause and allow other threads to execute.

Interrupts this thread.

«interface»
java.lang.Runnable

8

The Static yield() Method

You can use the yield() method to temporarily release time
for other threads. For example, suppose you modify the
code in Lines 53-57 in TaskThreadDemo.java as follows:

public void run() {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 Thread.yield();

 }

}

Every time a number is printed, the print100 thread is
yielded. So, the numbers are printed after the characters.

9

The Static sleep(milliseconds) Method

The sleep(long mills) method puts the thread to sleep for the specified
time in milliseconds. For example, suppose you modify the code in
Lines 53-57 in TaskThreadDemo.java as follows:

public void run() {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 try {

 if (i >= 50) Thread.sleep(1);

 }

 catch (InterruptedException ex) {

 }

 }

}

Every time a number (>= 50) is printed, the print100 thread is put to
sleep for 1 millisecond.

The sleep() method may throw an

InterruptedException, which is a checked

exception.

This rarely occurs, but you have to catch it

as it is a checked exception.

The same hold for the join() method.

10

11

The join() Method
You can use the join() method to force one thread to wait for another
thread to finish. For example, suppose you modify the code in Lines
53-57 in TaskThreadDemo.java as follows:

The numbers after 50 are printed after thread printA is finished.

printA.join()

-char token

+getToken

+setToken

+paintCompone

t

+mouseClicked

Thread

print100

-char token

+getToken

+setToken

+paintCompo

net

+mouseClicke

d

Wait for printA

to finish

+getToken

+setToken

+paintComponet

Thread

printA

-char token

+getToken

+setToken

+paintCompo

net

+mouseClicke

d

 printA finished

-char token

public void run() {

 Thread thread4 = new Thread(

new PrintChar('c', 40));

 thread4.start();

 try {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 if (i == 50) thread4.join();

 }

 }

 catch (InterruptedException ex) {

 }

}

12

isAlive(), interrupt(), and isInterrupted()

The isAlive() method is used to find out the state of a
thread. It returns true if a thread is in the Ready, Blocked,
or Running state; it returns false if a thread is new and has
not started or if it is finished.

The interrupt() method interrupts a thread in the following
way: If a thread is currently in the Ready or Running state,
its interrupted flag is set; if a thread is currently blocked, it
is awakened and enters the Ready state, and an
java.io.InterruptedException is thrown.

The isInterrupt() method tests whether the thread is
interrupted.

13

The deprecated stop(), suspend(), and

resume() Methods

NOTE: The Thread class also contains the stop(), suspend(), and

resume() methods. As of Java 2, these methods are deprecated (or

outdated) because they are known to be inherently unsafe. You

should assign null to a Thread variable to indicate that it is stopped

rather than use the stop() method.

14

Thread Priority

 Each thread is assigned a default priority of

Thread.NORM_PRIORITY. You can reset the

priority using setPriority(int priority).

 Some constants for priorities include

Thread.MIN_PRIORITY

Thread.MAX_PRIORITY
Thread.NORM_PRIORITY

15

Example: Flashing Text

FlashingText

http://course.cs.ust.hk/comp3021/slides/html/FlashingText.html

16

GUI Event Dispatcher Thread

GUI event handling and painting code executes in a

single thread, called the event dispatcher thread. This

ensures that each event handler finishes executing before

the next one executes and the painting isn’t interrupted

by events.

17

Launch Application from Main Method

So far, you have launched your GUI application from the

main method by creating a frame and making it visible. This

works fine for most applications. In certain situations,

however, it could cause problems. To avoid possible thread

deadlock, you should launch GUI creation from the event

dispatcher thread as follows:

public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 // Place the code for creating a frame and setting it properties

 }

 });

}

18

invokeLater and invokeAndWait

In certain situations, you need to run the code in the event

dispatcher thread to avoid possible deadlock. You can use the

static methods, invokeLater and invokeAndWait, in the

javax.swing.SwingUtilities class to run the code in the event

dispatcher thread. You must put this code in the run method of a

Runnable object and specify the Runnable object as the

argument to invokeLater and invokeAndWait. The invokeLater

method returns immediately, without waiting for the event

dispatcher thread to execute the code. The invokeAndWait

method is just like invokeLater, except that invokeAndWait

doesn't return until the event-dispatching thread has executed the

specified code.

19

GUI Event Dispatcher Thread Demo

EventDispatcherThreadDemo

http://course.cse.ust.hk/comp3021/slides/html/EventDispatcherThreadDemo.html

20

Case Study: Clock with Audio (Optional)

The example creates an applet that displays a running clock and

announces the time at one-minute intervals. For example, if the

current time is 6:30:00, the applet announces, "six o’clock thirty

minutes a.m." If the current time is 20:20:00, the applet announces,

"eight o’clock twenty minutes p.m." Also add a label to display the

digital time.

ClockWithAudio

http://course.cs.ust.hk/comp3021/slides/html/ClockWithAudio.html

21

Run Audio on Separate Thread

When you run the preceding program, you will notice that the second

hand does not display at the first, second, and third seconds of the

minute. This is because sleep(1500) is invoked twice in the

announceTime() method, which takes three seconds to announce the

time at the beginning of each minute. Thus, the next action event is

delayed for three seconds during the first three seconds of each

minute. As a result of this delay, the time is not updated and the clock

was not repainted for these three seconds. To fix this problem, you

should announce the time on a separate thread. This can be

accomplished by modifying the announceTime method.

ClockWithAudioOnSeparateThread

http://course.cs.ust.hk/comp3021/slides/html/ClockWithAudioOnSeparateThread.html

22

Thread Pools

Starting a new thread for each task could limit throughput and cause

poor performance. A thread pool is ideal to manage the number of

tasks executing concurrently. JDK 1.5 uses the Executor interface for

executing tasks in a thread pool and the ExecutorService interface for

managing and controlling tasks. ExecutorService is a subinterface of

Executor.

Shuts down the executor, but allows the tasks in the executor to

complete. Once shutdown, it cannot accept new tasks.

Shuts down the executor immediately even though there are

unfinished threads in the pool. Returns a list of unfinished

tasks.

Returns true if the executor has been shutdown.

Returns true if all tasks in the pool are terminated.

«interface»
java.util.concurrent.Executor

+execute(Runnable object): void

Executes the runnable task.

\

«interface»
java.util.concurrent.ExecutorService

+shutdown(): void

+shutdownNow(): List<Runnable>

+isShutdown(): boolean

+isTerminated(): boolean

23

Creating Executors

To create an Executor object, use the static methods in the Executors

class.

Creates a thread pool with a fixed number of threads executing
concurrently. A thread may be reused to execute another task

after its current task is finished.

Creates a thread pool that creates new threads as needed, but
will reuse previously constructed threads when they are

available.

java.util.concurrent.Executors

+newFixedThreadPool(numberOfThreads:

int): ExecutorService

+newCachedThreadPool():

ExecutorService

ExecutorDemo

http://course.cs.ust.hk/comp3021/slides/html/ExecutorDemo.html

24

Thread Synchronization

A shared resource may be corrupted if it is

accessed simultaneously by multiple threads. For

example, two unsynchronized threads accessing

the same bank account may cause conflict.

Step balance thread[i] thread[j]

1 0 newBalance = bank.getBalance() + 1;

2 0 newBalance = bank.getBalance() + 1;

3 1 bank.setBalance(newBalance);

4 1 bank.setBalance(newBalance);

25

Example: Showing Resource Conflict

 Objective: Write a program that demonstrates the problem of
resource conflict. Suppose that you create and launch one
hundred threads, each of which adds a penny to an account.
Assume that the account is initially empty.

AccountWithoutSync

Account

-balance: int

+getBalance(): int

+deposit(amount: int): void

100
AccountWithoutSync

-bank: Account

-thread: Thread[]

+main(args: String[]): void

AddAPennyTask

+run(): void

java.lang.Runnable

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

1 1 1

http://course.cs.ust.hk/comp3021/slides/html/AccountWithoutSync.html

26

Race Condition
What, then, caused the error in the example? Here is a possible scenario:

The effect of this scenario is that Task 1 did nothing, because in
Step 4 Task 2 overrides Task 1's result. Obviously, the problem is
that Task 1 and Task 2 are accessing a common resource in a way
that causes conflict. This is a common problem known as a race
condition in multithreaded programs. A class is said to be thread-
safe if an object of the class does not cause a race condition in the
presence of multiple threads. As demonstrated in the preceding
example, the Account class is not thread-safe.

 Step balance Task 1 Task 2

1 0 newBalance = balance + 1;

2 0 newBalance = balance + 1;

3 1 balance = newBalance;

4 1 balance = newBalance;

);

27

The synchronized keyword

To avoid race conditions, more than one thread must be prevented

from simultaneously entering certain part of the program, known as

critical region. The critical region in the Listing 29.7 is the entire

deposit method. You can use the synchronized keyword to

synchronize the method so that only one thread can access the method

at a time. There are several ways to correct the problem in Listing

29.7, one approach is to make Account thread-safe by adding the

synchronized keyword in the deposit method in Line 45 as follows:

public synchronized void deposit(double amount)

28

Synchronizing Instance Methods and

Static Methods

A synchronized method acquires a lock before it executes.
In the case of an instance method, the lock is on the object
for which the method was invoked. In the case of a static
method, the lock is on the class. If one thread invokes a
synchronized instance method (respectively, static method)
on an object, the lock of that object (respectively, class) is
acquired first, then the method is executed, and finally the
lock is released. Another thread invoking the same method
of that object (respectively, class) is blocked until the lock
is released.

29

Synchronizing Instance Methods and

Static Methods

With the deposit method synchronized, the preceding scenario cannot

happen. If Task 2 starts to enter the method, and Task 1 is already in

the method, Task 2 is blocked until Task 1 finishes the method.

Acquire a lock on the object account

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Execute the deposit method

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Release the lock

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Task 1

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Acqurie a lock on the object account

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Execute the deposit method

-char token

+getToken

+setToken

+paintComponet

Release the lock

Task 2

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

 Wait to acquire the lock

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

30

 Synchronizing Statements

Invoking a synchronized instance method of an object acquires a lock
on the object, and invoking a synchronized static method of a class
acquires a lock on the class. A synchronized statement can be used to
acquire a lock on any object, not just this object, when executing a
block of the code in a method. This block is referred to as a
synchronized block. The general form of a synchronized statement is
as follows:

synchronized (expr) {

 statements;

}

The expression expr must evaluate to an object reference. If the object
is already locked by another thread, the thread is blocked until the
lock is released. When a lock is obtained on the object, the statements
in the synchronized block are executed, and then the lock is released.

31

 Synchronizing Statements vs. Methods

Any synchronized instance method can be converted into a

synchronized statement. Suppose that the following is a synchronized

instance method:

public synchronized void xMethod() {

 // method body

}

This method is equivalent to

public void xMethod() {

 synchronized (this) {

 // method body

 }

}

32

 Synchronization Using Locks
A synchronized instance method implicitly acquires a lock on the
instance before it executes the method.
JDK 1.5 enables you to use locks explicitly. The new locking features
are flexible and give you more control for coordinating threads. A
lock is an instance of the Lock interface, which declares the methods
for acquiring and releasing locks, as shown in Figure 29.14. A lock
may also use the newCondition() method to create any number of
Condition objects, which can be used for thread communications.

Same as ReentrantLock(false).

Creates a lock with the given fairness policy. When the
fairness is true, the longest-waiting thread will get the

lock. Otherwise, there is no particular access order.

«interface»
java.util.concurrent.locks.Lock

+lock(): void

+unlock(): void

+newCondition(): Condition

Acquires the lock.

Releases the lock.

Returns a new Condition instance that is bound to this
Lock instance.

java.util.concurrent.locks.ReentrantLock

+ReentrantLock()

+ReentrantLock(fair: boolean)

33

 Fairness Policy

ReentrantLock is a concrete implementation of Lock for
creating mutual exclusive locks. You can create a lock with
the specified fairness policy. True fairness policies
guarantee the longest-wait thread to obtain the lock first.
False fairness policies grant a lock to a waiting thread
without any access order. Programs using fair locks
accessed by many threads may have poor overall
performance than those using the default setting, but have
smaller variances in times to obtain locks and guarantee
lack of starvation.

34

 Example: Using Locks

This example revises AccountWithoutSync.java in Listing
29.7 to synchronize the account modification using explicit
locks.

AccountWithSyncUsingLock

http://course.cs.ust.hk/comp3021/slides/html/AccountWithSyncUsingLock.html

35

 Cooperation Among Threads

The conditions can be used to facilitate communications among
threads. A thread can specify what to do under a certain condition.
Conditions are objects created by invoking the newCondition()
method on a Lock object. Once a condition is created, you can use its
await(), signal(), and signalAll() methods for thread communications,
as shown in Figure 29.15. The await() method causes the current
thread to wait until the condition is signaled. The signal() method
wakes up one waiting thread, and the signalAll() method wakes all
waiting threads.

«interface»

java.util.concurrent.Condition

+await(): void

+signal(): void

+signalAll(): Condition

Causes the current thread to wait until the condition is signaled.

Wakes up one waiting thread.

Wakes up all waiting threads.

36

 Cooperation Among Threads

To synchronize the operations, use a lock with a condition:
newDeposit (i.e., new deposit added to the account). If the balance is
less than the amount to be withdrawn, the withdraw task will wait
for the newDeposit condition. When the deposit task adds money to
the account, the task signals the waiting withdraw task to try again.
The interaction between the two tasks is shown in Figure 29.16.

while (balance < withdrawAmount)

 newDeposit.await();

Withdraw Task

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

balance -= withdrawAmount

-char token

+getToken

+setToken

lock.unlock();

Deposit Task

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

lock.lock();

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

newDeposit.signalAll();

balance += depositAmount

-char token

+getToken
+setToken

+paintComponet

+mouseClicked

lock.unlock();

-char token

lock.lock();

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

37

Example: Thread Cooperation
Write a program that demonstrates thread cooperation. Suppose that

you create and launch two threads, one deposits to an account, and

the other withdraws from the same account. The second thread has to

wait if the amount to be withdrawn is more than the current balance

in the account. Whenever new fund is deposited to the account, the

first thread notifies the second thread to resume. If the amount is still

not enough for a withdrawal, the second thread has to continue to

wait for more fund in the account. Assume the initial balance is 0 and

the amount to deposit and to withdraw is randomly generated.

ThreadCooperation

http://course.cs.ust.hk/comp3021/slides/html/ThreadCooperation.html

38

 Java’s Built-in Monitors (Optional)

Locks and conditions are new in Java 5. Prior to Java 5,
thread communications are programmed using object’s built-
in monitors. Locks and conditions are more powerful and
flexible than the built-in monitor. For this reason, this section
can be completely ignored. However, if you work with legacy
Java code, you may encounter the Java’s built-in monitor. A
monitor is an object with mutual exclusion and
synchronization capabilities. Only one thread can execute a
method at a time in the monitor. A thread enters the monitor
by acquiring a lock on the monitor and exits by releasing the
lock. Any object can be a monitor. An object becomes a
monitor once a thread locks it. Locking is implemented using
the synchronized keyword on a method or a block. A thread
must acquire a lock before executing a synchronized method
or block. A thread can wait in a monitor if the condition is not
right for it to continue executing in the monitor.

39

 wait(), notify(), and notifyAll()

Use the wait(), notify(), and notifyAll() methods to facilitate

communication among threads.

The wait(), notify(), and notifyAll() methods must be called in a

synchronized method or a synchronized block on the calling object of

these methods. Otherwise, an IllegalMonitorStateException would

occur.

The wait() method lets the thread wait until some condition occurs.

When it occurs, you can use the notify() or notifyAll() methods to

notify the waiting threads to resume normal execution. The

notifyAll() method wakes up all waiting threads, while notify() picks

up only one thread from a waiting queue.

40

 Example: Using Monitor

synchronized (anObject) {

 try {

 // Wait for the condition to become true

 while (!condition)

 anObject.wait();

 // Do something when condition is true

 }

 catch (InterruptedException ex) {

 ex.printStackTrace();

 }

}

Task 1

synchronized (anObject) {

 // When condition becomes true

 anObject.notify(); or anObject.notifyAll();

 ...

}

Task 2

resume

The wait(), notify(), and notifyAll() methods must be called in a
synchronized method or a synchronized block on the receiving
object of these methods. Otherwise, an
IllegalMonitorStateException will occur.

When wait() is invoked, it pauses the thread and simultaneously
releases the lock on the object. When the thread is restarted after
being notified, the lock is automatically reacquired.

The wait(), notify(), and notifyAll() methods on an object are
analogous to the await(), signal(), and signalAll() methods on a
condition.

41

Case Study: Producer/Consumer (Optional)
Consider the classic Consumer/Producer example. Suppose you use a buffer to
store integers. The buffer size is limited. The buffer provides the method write(int)
to add an int value to the buffer and the method read() to read and delete an int
value from the buffer. To synchronize the operations, use a lock with two
conditions: notEmpty (i.e., buffer is not empty) and notFull (i.e., buffer is not full).
When a task adds an int to the buffer, if the buffer is full, the task will wait for the
notFull condition. When a task deletes an int from the buffer, if the buffer is empty,
the task will wait for the notEmpty condition. The interaction between the two
tasks is shown in Figure 29.19.

while (count == CAPACITY)

 notFull.await();

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Task for adding an int

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Add an int to the buffer

-char token

+getToken

+setToken

+paintComponet

notEmpty.signal();

-char token

while (count == 0)

 notEmpty.await();

-char token

+getToken

+setToken
+paintComponet

+mouseClicked

Task for deleting an int

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Delete an int to the buffer

-char token

+getToken

+setToken

+paintComponet

notFull.signal();

-char token

42

Case Study: Producer/Consumer (Optional)
Listing 29.10 presents the complete program. The program contains
the Buffer class (lines 43-89) and two tasks for repeatedly producing
and consuming numbers to and from the buffer (lines 15-41). The
write(int) method (line 58) adds an integer to the buffer. The read()
method (line 75) deletes and returns an integer from the buffer.

For simplicity, the buffer is implemented using a linked list (lines 48-
49). Two conditions notEmpty and notFull on the lock are created in
lines 55-56. The conditions are bound to a lock. A lock must be
acquired before a condition can be applied. If you use the wait() and
notify() methods to rewrite this example, you have to designate two
objects as monitors.

ConsumerProducer

http://course.cs.ust.hk/comp3021/slides/html/ConsumerProducer.html

43

Blocking Queues (Optional)

§22.8 introduced queues and priority queues. A blocking
queue causes a thread to block when you try to add an
element to a full queue or to remove an element from an
empty queue.

«interface»
java.util.concurrent.BlockingQueue<E>

+put(element: E): void

+take(): E

«interface»
java.util.Collection<E>

Inserts an element to the tail of the queue.

Waits if the queue is full.

Retrieves and removes the head of this

queue. Waits if the queue is empty.

«interface»
java.util.Queue<E>

44

Concrete Blocking Queues
Three concrete blocking queues ArrayBlockingQueue, LinkedBlockingQueue, and
PriorityBlockingQueue are supported in JDK 1.5, as shown in Figure 29.22. All are
in the java.util.concurrent package. ArrayBlockingQueue implements a blocking
queue using an array. You have to specify a capacity or an optional fairness to
construct an ArrayBlockingQueue. LinkedBlockingQueue implements a blocking
queue using a linked list. You may create an unbounded or bounded
LinkedBlockingQueue. PriorityBlockingQueue is a priority queue. You may create

an unbounded or bounded priority queue.

ArrayBlockingQueue<E>

+ArrayBlockingQueue(capacity: int)

+ArrayBlockingQueue(capacity: int,

fair: boolean)

«interface»
java.util.concurrent.BlockingQueue<E>

LinkedBlockingQueue<E>

+LinkedBlockingQueue()

+LinkedBlockingQueue(capacity: int)

PriorityBlockingQueue<E>

+PriorityBlockingQueue()

+PriorityBlockingQueue(capacity: int)

45

Producer/Consumer Using Blocking Queues

Listing 29.11 gives an example of using an ArrayBlockingQueue to

simplify the Consumer/Producer example in Listing 29.11.

ConsumerProducerUsingBlockingQueue

http://course.cs.ust.hk/comp3021/slides/html/ConsumerProducerUsingBlockingQueue.html

46

Semaphores (Optional)
Semaphores can be used to restrict the number of threads that access
a shared resource. Before accessing the resource, a thread must
acquire a permit from the semaphore. After finishing with the
resource, the thread must return the permit back to the semaphore, as
shown in Figure 29.29.

Acquire a permit from a semaphore.
Wait if the permit is not available.

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

A thread accessing a shared resource

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Access the resource

-char token

+getToken

+setToken

+paintComponet

Release the permit to the semaphore

-char token

semaphore.acquire();

A thread accessing a shared resource

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

 Access the resource

-char token

+getToken

+setToken

+paintComponet

semaphore.release();

-char token

47

Creating Semaphores
To create a semaphore, you have to specify the number of
permits with an optional fairness policy, as shown in Figure
29.29. A task acquires a permit by invoking the semaphore’s
acquire() method and releases the permit by invoking the
semaphore’s release() method. Once a permit is acquired, the
total number of available permits in a semaphore is reduced by
1. Once a permit is released, the total number of available
permits in a semaphore is increased by 1.

Creates a semaphore with the specified number of permits. The
fairness policy is false.

Creates a semaphore with the specified number of permits and

the fairness policy.

Acquires a permit from this semaphore. If no permit is

available, the thread is blocked until one is available.

Releases a permit back to the semaphore.

java.util.concurrent.Semaphore

+Semaphore(numberOfPermits: int)

+Semaphore(numberOfPermits: int, fair:

boolean)

+acquire(): void

+release(): void

48

Deadlock
Sometimes two or more threads need to acquire the locks on several shared objects.

This could cause deadlock, in which each thread has the lock on one of the objects

and is waiting for the lock on the other object. Consider the scenario with two

threads and two objects, as shown in Figure 29.15. Thread 1 acquired a lock on

object1 and Thread 2 acquired a lock on object2. Now Thread 1 is waiting for the

lock on object2 and Thread 2 for the lock on object1. The two threads wait for each

other to release the in order to get the lock, and neither can continue to run.

synchronized (object1) {

 // do something here

 synchronized (object2) {

 // do something here

 }

}

Thread 1

synchronized (object2) {

 // do something here

 synchronized (object1) {

 // do something here

 }

}

Thread 2

Step

1

2

3

4

5

6

Wait for Thread 2 to
release the lock on object2

Wait for Thread 1 to
release the lock on object1

49

Preventing Deadlock

Deadlock can be easily avoided by using a simple technique known
as resource ordering. With this technique, you assign an order on all
the objects whose locks must be acquired and ensure that each
thread acquires the locks in that order. For the example in Figure
29.15, suppose the objects are ordered as object1 and object2. Using
the resource ordering technique, Thread 2 must acquire a lock on
object1 first, then on object2. Once Thread 1 acquired a lock on
object1, Thread 2 has to wait for a lock on object1. So Thread 1 will
be able to acquire a lock on object2 and no deadlock would occur.

50

Thread States

New Ready

Thread created

Finished

Running

start()
run()

Wait for target

to finish

join()

run() returns

yield(), or

time out

interrupt()

Wait for time

out

Wait to be

notified

sleep()

wait() Target

finished

notify() or

notifyAll()

Time out

Blocked

Interrupted()

A thread can be in one of five states:

New, Ready, Running, Blocked, or

Finished.

51

Synchronized Collections
The classes in the Java Collections Framework are not thread-safe,
i.e., the contents may be corrupted if they are accessed and updated
concurrently by multiple threads. You can protect the data in a
collection by locking the collection or using synchronized collections.

The Collections class provides six static methods for wrapping a
collection into a synchronized version, as shown in Figure 29.27. The
collections created using these methods are called synchronization
wrappers.

 java.util.Collections

+synchronizedCollection(c: Collection): Collection

+synchronizedList(list: List): List

+synchronizedMap(m: Map): Map

+synchronizedSet(s: Set): Set

+synchronizedSortedMap(s: SortedMap): SortedMap

+synchronizedSortedSet(s: SortedSet): SortedSet

Returns a synchronized collection.

Returns a synchronized list from the specified list.

Returns a synchronized map from the specified map.

Returns a synchronized set from the specified set.

Returns a synchronized sorted map from the specified

sorted map.

Returns a synchronized sorted set.

52

Vector, Stack, and Hashtable
Invoking synchronizedCollection(Collection c) returns a new Collection
object, in which all the methods that access and update the original
collection c are synchronized. These methods are implemented using the
synchronized keyword. For example, the add method is implemented
like this:

public boolean add(E o) {

 synchronized (this) { return c.add(o); }

}

The synchronized collections can be safely accessed and modified by
multiple threads concurrently.

The methods in java.util.Vector, java.util.Stack, and Hashtable are
already synchronized. These are old classes introduced in JDK 1.0. In
JDK 1.5, you should use java.util.ArrayList to replace Vector,
java.util.LinkedList to replace Stack, and java.util.Map to replace
Hashtable. If synchronization is needed, use a synchronization wrapper.

Companion
Website

