
Course Review

1

Final Exam

✦ 20/5/2016, Friday 8:30AM - 11:30AM,
Tsang Shiu Tim Art Hall

✦  Include all topics but with more emphasis
on materials after the midterm.

✦ Similar to midterm.
✦ Closed book with a focus on concepts and

principles.

2

Final Exam

✦  Basic OOP (20%)
–  Polymorphism
–  Object initialization
–  Abstract class, Interface, and Inner class

✦  Exception Handling(10%)
✦  Generics (25%)
✦  Multithreading (25%)
✦  Others (strings, networking, file I/O, GUI)

(20%)

Java

✦ Object oriented programming
– No explicit pointers but objects are references
– Extends one class but can implement multiple

interfaces.
✦ Exception handling is the norm: must

handle all checked exceptions.
✦ Generics.
✦ Threads.
✦ Comprehensive APIs for dealing with GUI,

networking, … 4

Generics

5

Casting from
Superclass to Subclass

Explicit casting must be used when casting an
object from a superclass to a subclass. This type
of casting may not always succeed.

Apple x = (Apple)fruit;

Orange x = (Orange)fruit;

6

(From Inheritance Lecture)

Cas$ng	is	bad	

✦ Remember	the	devil:	void*?	
✦  If:	Object o = new Object() and	Apple a =
(Apple)o,	you	get	a	run$me	error.	

✦  It	was	mostly	used	when	you	use	collec$on	
classes	such	as	“LinkedList”.	

✦ No	longer	necessary	with	the	use	of	
Generics	

7

(From Inheritance Lecture)

What is Generics?

✦  Generics is the capability to parameterize types.
✦  You can define a class or a method with generic

types that can be substituted using concrete types
by the compiler.

✦  For example, you may define a generic stack
class that stores the elements of a generic type.
From this generic class, you may create a stack
object for holding strings and a stack object for
holding numbers. Here, strings and numbers are
concrete types that replace the generic type.

8

Why Generics?

✦  The key benefit of generics
–  Enable errors to be detected at compile time rather

than at runtime.
–  A generic class or method permits you to specify

allowable types of objects that the class or method
may work with.

–  If you attempt to use the class or method with an
incompatible object, the compile error occurs.

9

Generic Type

10

Generic Instantiation Runtime error

Compile error Improves reliability
GenericMotivation
_interfaces.ComparableRectangle, ComparableRectangleWithGeneric

Generic ArrayList in JDK 1.5

11

No Casting Needed
ArrayList<Double> list = new ArrayList<Double>();

list.add(5.5); // 5.5 is automatically converted to new Double(5.5)
list.add(3.0); // 3.0 is automatically converted to new Double(3.0)
Double doubleObject = list.get(0); // No casting is needed
double d = list.get(1); // Automatically converted to double

12

Generic Types Restriction

✦ Generic types must be reference types.
✦ The following statement is wrong:
 ArrayList<int> ints = new ArrayList<int>();
✦ Use wrapper class types:
 ArrayList<Integer> ints = …

13

Mul$ple	Type	Parameter	
✦  Our	coffee	shop	lunch	menu	

–  Meat	+	Starch	+	Soup	
–  (Pork/Beef/Chicken)+(Rice/Italy	noodle/Fries)+(Cream/Vegetable	

soup)	

14

class Lunch<M,St,S> {
 M meat_;
 St starch_;
 S soup_;
 public Lunch(M meat, St starch, S soup){

meat_ = meat;
starch_=starch;
soup_=soup;

 }
}

Beef b = new Beef();
Rice r = new Rice();
MushroomSoup s = new MushroomSoup();
Lunch<Beef, Rice, MushroomSoup> l = new Lunch<Beef,
Rice, MushroomSoup>(b,r,s);

Problem	1:	
Incorrect	Parameter	Types	

15

Node b = new Node();
TreeNode r = new TreeNode();
BTreeNode s = new BTreeNode();
Lunch<Node, TreeNode, BTreeNode> l = new
Lunch<Node, TreeNode, BTreeNode>(b,r,s);

We want to more properly say the following:
Lunch<subtypes of Meat, subtypes of Starch, subtypes of Soup>

Bounded Generic Types
public	class	Meat	{	…	}	
public	class	Starch	{	…	}	
public	class	Soup	{	…	}	
public	class	Beef	extends	Meat	{	…	}	
public	class	CreamSoup	extends	Soup	{	…	}	
 class Lunch <M extends Meat,St extends Starch,S extends Soup>
{
 M meat_;
 St starch_;
 S soup_;
 public Lunch(M meat, St starch, S soup){

meat_ = meat;
starch_=starch;
soup_=soup;

 }
}

	
	
	
	
	
	

16

Generic Methods

17

 public static <E> void print(E[] list) {
 for (int i = 0; i < list.length; i++)
 System.out.print(list[i] + " ");
 System.out.println();
 }

 public static void print(Object[] list) {
 for (int i = 0; i < list.length; i++)
 System.out.print(list[i] + " ");
 System.out.println();
 }

GenericMethodDemo

18

public	class	Test	{	
		public	sta.c	void	main(String[]	args)	{	

	Integer[]	integers	=	{1,2,3,4,5};	
	String[]	strings	=	{"London",	"Paris",	"New	York",	"Aus.n"};	

		 	Object[]	objects	=	{"London",	"Paris",	"New	York",	"Aus.n",	1};	
	Test.<Integer>print(integers);	
	Test.<String>print(strings);	
	Test.print(objects);	
	Test.print1(integers);	
	Test.print1(strings);	
	Test.print1(objects);	

			}	
			public	sta.c	<E>	void	print(E[]	list)	{	
				 	for	(int	i	=	0;	i	<	list.length;	i++)	
						 			System.out.print(list[i]	+	"	");	
				 	System.out.println();	
			}	
			public	sta.c	void	print1(Object[]	list)	{	

	for	(int	i	=	0;	i	<	list.length;	i++)	
					System.out.print(list[i]	+	"	");	
	System.out.println();	

			}	
}	

GenericTest

Problem	2:	
Inheritance	of	Generic	Types	

✦ ClassA	extends	ClassB	
✦  Subtype	

–  ClassA	is	a	subtype	of	ClassB	
–  Stack<ClassA>	is	NOT	a	subtype	of	
Stack<ClassB>	

✦ Are	we	losing	polymorphism?	
–  This	creates	trouble	for	us	
–  Customer	requests	a	refund	because	they	want	
more	flexibility	

19

Define
Subclasses of
Generic types
not required!

Are	we	losing	polymorphism?	

20

//Let us say ClassB is a
//subclass of ClassA
Stack<ClassA> s1 = new Stack<ClassA>();

Stack<ClassB> s2 = new Stack<ClassB>();

s2.pushAll(s1);
//should be OK since ClassB is also a
//type of ClassA. s1 that handles the
//super type can handle subtypes

s1.popAll(s2);
//should be OK since ClassA is a super
//type of ClassB. Again, s1 should be
//able to take subtypes of ClassA.

class Stack<T>{
 public void pushAll(Stack<T> s){
 for(//there is element in me)
 s.push(pop());
 }
 public void popAll(Stack<T> s) {
 for(//there is element in s)
 push(s.pop());
 }
}

It seems that parameter s should behave polymorphically

We	need	“wild	card”	

✦  In	defining	a	generic	type	
–  “E	extends	ClassA”	represents	all	subtypes	of	
ClassA	

✦  In	defining	a	container	variable	that	
behaves	polymorphically	
–  “?	extends”	represent	any	sub	types.	
–  “?	super”	represent	any	super	types	

21

Support	Polymorphism	

22

class Stack<T>{
 public void pushAll(Stack<T> s){
 for(//there is element in me)
 s.push(pop());
 }
 public void popAll(Stack<T> s) {
 for(//there is element in s)
 push(s.pop());
 }
}

Stack<ClassA> s1 = new Stack<ClassA>();
Stack<ClassB> s2 = new Stack<ClassB>();
s2.pushAll(s1);
s1.popAll(s2);

class Stack<T>{
 public void pushAll(Stack<? super T> s){
 for(//there is element in me)
 s.push(pop());
 }
 public void popAll(Stack<? extends T> s) {
 for(//there is element in s)
 push(s.pop());
 }
}

Versi
on 4

23

Wildcards
Why wildcards are necessary? One more example.

? unbounded wildcard
? extends T bounded wildcard
? super T lower bound wildcard:

WildCardDemo1

WildCardDemo22 WildCardDemo3

Erasure on Generics

Generics are implemented using an approach called
type erasure.

24

public static <T> int count(T[] anArray, T elem) {
 int cnt = 0;
 for (T e : anArray)
 if (e.equals(elem))
 ++cnt;
 return cnt;
}

public static int count(Object[] anArray, Object elem) {
 int cnt = 0;
 for (Object e : anArray)
 if (e.equals(elem))
 ++cnt;
 return cnt;
}

Erasure on Generics

✦  Generics are a wrapper over java.lang.Object to ensure
backwards compatibility

✦  Generics are implemented using an approach called type
erasure.
–  Unbound variable replaced by “Object”
–  Bounded variable “ T extends ClassA”, “? super ClassB” replaced by

bound, “ClassA” or “ClassB”.
✦  The types used to instantiate generics serve as

“comments”.
✦  What generics really is:

–  Compile time checks
–  Hints to generate the casting correctly.
–  Enforcing the usage of the same type

 25

26

Compile Time Checking
For example, the compiler checks whether generics
is used correctly for the following code in (a) and
translates it into the equivalent code in (b) for
runtime use. The code in (b) uses the raw type.

ArrayList<String> list = new ArrayList<String>();

list.add("Oklahoma");

String state = list.get(0);

(a) (b)

ArrayList list = new ArrayList();

list.add("Oklahoma");

String state = (String)(list.get(0));

Checks	and	Hints	

27

class Parent<T> {
 T compute(T t){return t;}
}

p = new Parent<String>();
String s = p.compute(“s”);
String s = p.compute(circle);

class Parent{
 Object compute(Object t){
 return t; }
}

p = new Parent();
String s = (String) p.compute(“s”);
String s = (String) p.compute(circle);

Generics tells us p can only
deal with Strings . This

information is stored in the
compiler not in the code

Type	Enforcement	

28

class Parent<T extends Geom> {
 T compute(T t1, T t2){return t1.same(t2);}
}

p = new Parent<Circle>();
String s = p.compute(circle, triangle);

class Parent{
 Geom compute(Geom t1, Geom t2){
 return t1.same(t2); }
}

p = new Parent();
Geom = (Circle) p.compute((Circle)circle, (Circle)triangle);

Generics tells us these two
parameters have to be the same

type, not just subclass of
Geom. This information is

stored in the compiler not in
the code

Important Facts

It is important to note that a generic class is
shared by all its instances regardless of its
actual generic type.

GenericStack<String> stack1 = new GenericStack<String>();
GenericStack<Integer> stack2 = new GenericStack<Integer>();

Although GenericStack<String> and
GenericStack<Integer> are two types, but there is
only one class GenericStack loaded into the JVM.

29
TestInstanceof

Restrictions on Generics

✦  Restriction 1: Cannot Create an Instance of a Generic
Type. (i.e., new E()).

✦  Restriction 2: Generic Array Creation is Not Allowed.
(i.e., new E[100]).

✦  Restriction 3: A Generic Type Parameter of a Class is
Not Allowed in a Static Context.

✦  Restriction 4: Exception Classes Cannot be Generic.

30

Not allowed in a static context

31

public	class	Test<E>	{	
		public	sta.c	void	m	(E	o1)	{	//	Illegal	
		}	
		public	sta.c	E	o1;	//	Illegal	
		sta.c	{	
				E	o2;	//	Illegal	
		}	
}	

Not allowed in exception classes

32

public	class	MyExcep.on<T>	extends	Excep.on	{}	
	
	
try	{	
		…	
}	
catch	(MyExcep.on	<Integer>	ex)	{	
		…	
}	
catch	(MyExcep.on<Circle>	ex)	{	
		…	
}	

Threads

33

34

Creating Tasks and Threads

// Custom task class
public class TaskClass implements Runnable {
 ...
 public TaskClass(...) {
 ...
 }

 // Implement the run method in Runnable
 public void run() {
 // Tell system how to run custom thread
 ...
 }
 ...
}

// Client class
public class Client {
 ...
 public void someMethod() {
 ...
 // Create an instance of TaskClass
 TaskClass task = new TaskClass(...);

 // Create a thread
 Thread thread = new Thread(task);

 // Start a thread
 thread.start();
 ...
 }
 ...
}

java.lang.Runnable

TaskClass

run()

✦ The run() methods in a task class specifies
how to perform the task. It’s automatically
invoked by JVM when a thread is started.

✦ You should not invoke it: doing so merely
executes this method in the same thread; no
new thread is started.

35

36

The Thread Class

java.lang.Thread
+Thread()
+Thread(task: Runnable)
+start(): void
+isAlive(): boolean
+setPriority(p: int): void
+join(): void
+sleep(millis: long): void
+yield(): void
+interrupt(): void

Creates a default thread.
Creates a thread for a specified task.
Starts the thread that causes the run() method to be invoked by the JVM.
Tests whether the thread is currently running.
Sets priority p (ranging from 1 to 10) for this thread.
Waits for this thread to finish.
Puts the runnable object to sleep for a specified time in milliseconds.
Causes this thread to temporarily pause and allow other threads to execute.
Interrupts this thread.

«interface»
java.lang.Runnable

37

The Static sleep(milliseconds) Method
The sleep(long mills) method puts the thread to sleep for the specified
time in milliseconds. For example, suppose you modify the code in
Lines 53-57 in TaskThreadDemo.java as follows:

public void run() {
 for (int i = 1; i <= lastNum; i++) {
 System.out.print(" " + i);
 try {
 if (i >= 50) Thread.sleep(1);
 }
 catch (InterruptedException ex) {
 }
 }
}

Every time a number (>= 50) is printed, the print100 thread is put to
sleep for 1 millisecond.

✦ The sleep() method may throw an
InterruptedException, which is a checked
exception.

✦ This rarely occurs, but you have to catch it
as it is a checked exception.

✦ The same hold for the join() method.

38

39

The join() Method
You can use the join() method to force one thread to wait for another
thread to finish. For example, suppose you modify the code in Lines
53-57 in TaskThreadDemo.java as follows:

The numbers after 50 are printed after thread printA is finished.

printA.join()

-char token

+getToken
+setToken
+paintCompone
t
+mouseClicked

Thread
print100

-char token

+getToken
+setToken
+paintCompo
net
+mouseClicke
d

Wait for printA
to finish

+getToken
+setToken
+paintComponet

Thread
printA

-char token

+getToken
+setToken
+paintCompo
net
+mouseClicke
d

 printA finished

-char token

public void run() {
 Thread thread4 = new Thread(

new PrintChar('c', 40));
 thread4.start();
 try {
 for (int i = 1; i <= lastNum; i++) {
 System.out.print(" " + i);
 if (i == 50) thread4.join();
 }
 }
 catch (InterruptedException ex) {
 }
}

40

Thread Priority
✦  Each thread is assigned a default priority of
Thread.NORM_PRIORITY. You can reset the
priority using setPriority(int priority).

✦  Some constants for priorities include
Thread.MIN_PRIORITY
Thread.MAX_PRIORITY
Thread.NORM_PRIORITY

41

Thread Pools
Starting a new thread for each task could limit throughput and cause
poor performance. A thread pool is ideal to manage the number of
tasks executing concurrently. JDK 1.5 uses the Executor interface for
executing tasks in a thread pool and the ExecutorService interface for
managing and controlling tasks. ExecutorService is a subinterface of
Executor.

Shuts down the executor, but allows the tasks in the executor to
complete. Once shutdown, it cannot accept new tasks.

Shuts down the executor immediately even though there are
unfinished threads in the pool. Returns a list of unfinished
tasks.

Returns true if the executor has been shutdown.
Returns true if all tasks in the pool are terminated.

«interface»
java.util.concurrent.Executor

+execute(Runnable object): void

Executes the runnable task.

\
«interface»

java.util.concurrent.ExecutorService
+shutdown(): void

+shutdownNow(): List<Runnable>

+isShutdown(): boolean
+isTerminated(): boolean

42

Creating Executors
To create an Executor object, use the static methods in the Executors
class.

Creates a thread pool with a fixed number of threads executing
concurrently. A thread may be reused to execute another task
after its current task is finished.

Creates a thread pool that creates new threads as needed, but
will reuse previously constructed threads when they are
available.

java.util.concurrent.Executors
+newFixedThreadPool(numberOfThreads:

int): ExecutorService

+newCachedThreadPool():

ExecutorService

ExecutorDemo

43

Thread Synchronization

A shared resource may be corrupted if it is
accessed simultaneously by multiple threads. For
example, two unsynchronized threads accessing
the same bank account may cause conflict.

Step balance thread[i] thread[j]

1 0 newBalance = bank.getBalance() + 1;

2 0 newBalance = bank.getBalance() + 1;

3 1 bank.setBalance(newBalance);

4 1 bank.setBalance(newBalance);

44

Race Condition
What, then, caused the error in the example? Here is a possible scenario:

The effect of this scenario is that Task 1 did nothing, because in
Step 4 Task 2 overrides Task 1's result. Obviously, the problem is
that Task 1 and Task 2 are accessing a common resource in a way
that causes conflict. This is a common problem known as a race
condition in multithreaded programs. A class is said to be thread-
safe if an object of the class does not cause a race condition in the
presence of multiple threads. As demonstrated in the preceding
example, the Account class is not thread-safe.

 Step balance Task 1 Task 2

1 0 newBalance = balance + 1;
2 0 newBalance = balance + 1;
3 1 balance = newBalance;

4 1 balance = newBalance;
);

45

The synchronized keyword
To avoid race conditions, more than one thread must be prevented
from simultaneously entering certain part of the program, known as
critical region. The critical region in the Listing 29.7 is the entire
deposit method. You can use the synchronized keyword to
synchronize the method so that only one thread can access the method
at a time. There are several ways to correct the problem in Listing
29.7, one approach is to make Account thread-safe by adding the
synchronized keyword in the deposit method in Line 45 as follows:

public synchronized void deposit(double amount)

46

Synchronizing Instance Methods and
Static Methods

A synchronized method acquires a lock before it executes.
In the case of an instance method, the lock is on the object
for which the method was invoked. In the case of a static
method, the lock is on the class. If one thread invokes a
synchronized instance method (respectively, static method)
on an object, the lock of that object (respectively, class) is
acquired first, then the method is executed, and finally the
lock is released. Another thread invoking the same method
of that object (respectively, class) is blocked until the lock
is released.

47

 Synchronizing Statements
Invoking a synchronized instance method of an object acquires a lock
on the object, and invoking a synchronized static method of a class
acquires a lock on the class. A synchronized statement can be used to
acquire a lock on any object, not just this object, when executing a
block of the code in a method. This block is referred to as a
synchronized block. The general form of a synchronized statement is
as follows:

synchronized (expr) {
 statements;
}

The expression expr must evaluate to an object reference. If the object
is already locked by another thread, the thread is blocked until the
lock is released. When a lock is obtained on the object, the statements
in the synchronized block are executed, and then the lock is released.

48

 Synchronizing Statements vs. Methods
Any synchronized instance method can be converted into a
synchronized statement. Suppose that the following is a synchronized
instance method:

public synchronized void xMethod() {
 // method body
}

This method is equivalent to

public void xMethod() {
 synchronized (this) {
 // method body
 }
}

49

 Synchronization Using Locks
A synchronized instance method implicitly acquires a lock on the
instance before it executes the method.
JDK 1.5 enables you to use locks explicitly. The new locking features
are flexible and give you more control for coordinating threads. A
lock is an instance of the Lock interface, which declares the methods
for acquiring and releasing locks, as shown in Figure 29.14. A lock
may also use the newCondition() method to create any number of
Condition objects, which can be used for thread communications.

Same as ReentrantLock(false).
Creates a lock with the given fairness policy. When the

fairness is true, the longest-waiting thread will get the
lock. Otherwise, there is no particular access order.

«interface»
java.util.concurrent.locks.Lock

+lock(): void
+unlock(): void
+newCondition(): Condition

Acquires the lock.
Releases the lock.
Returns a new Condition instance that is bound to this

Lock instance.

java.util.concurrent.locks.ReentrantLock
+ReentrantLock()
+ReentrantLock(fair: boolean)

50

 Fairness Policy
ReentrantLock is a concrete implementation of Lock for
creating mutual exclusive locks. You can create a lock with
the specified fairness policy. True fairness policies
guarantee the longest-wait thread to obtain the lock first.
False fairness policies grant a lock to a waiting thread
without any access order. Programs using fair locks
accessed by many threads may have poor overall
performance than those using the default setting, but have
smaller variances in times to obtain locks and guarantee
lack of starvation.

51

 Example: Using Locks
This example revises AccountWithoutSync.java in Listing
29.7 to synchronize the account modification using explicit
locks.

AccountWithSyncUsingLock

52

 Cooperation Among Threads
The conditions can be used to facilitate communications among
threads. A thread can specify what to do under a certain condition.
Conditions are objects created by invoking the newCondition()
method on a Lock object. Once a condition is created, you can use its
await(), signal(), and signalAll() methods for thread communications,
as shown in Figure 29.15. The await() method causes the current
thread to wait until the condition is signaled. The signal() method
wakes up one waiting thread, and the signalAll() method wakes all
waiting threads.

«interface»

java.util.concurrent.Condition
+await(): void
+signal(): void
+signalAll(): Condition

Causes the current thread to wait until the condition is signaled.
Wakes up one waiting thread.
Wakes up all waiting threads.

53

 Cooperation Among Threads
To synchronize the operations, use a lock with a condition:
newDeposit (i.e., new deposit added to the account). If the balance is
less than the amount to be withdrawn, the withdraw task will wait
for the newDeposit condition. When the deposit task adds money to
the account, the task signals the waiting withdraw task to try again.
The interaction between the two tasks is shown in Figure 29.16.

while (balance < withdrawAmount)
 newDeposit.await();

Withdraw Task

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

balance -= withdrawAmount

-char token

+getToken
+setToken

lock.unlock();

Deposit Task

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

lock.lock();

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

newDeposit.signalAll();

balance += depositAmount

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

lock.unlock();

-char token

lock.lock();

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

54

Example: Thread Cooperation
Write a program that demonstrates thread cooperation. Suppose that
you create and launch two threads, one deposits to an account, and
the other withdraws from the same account. The second thread has to
wait if the amount to be withdrawn is more than the current balance
in the account. Whenever new fund is deposited to the account, the
first thread notifies the second thread to resume. If the amount is still
not enough for a withdrawal, the second thread has to continue to
wait for more fund in the account. Assume the initial balance is 0 and
the amount to deposit and to withdraw is randomly generated.

ThreadCooperation

55

 Java’s Built-in Monitors
Locks and conditions are new in Java 5. Prior to Java 5,
thread communications are programmed using object’s built-
in monitors. Locks and conditions are more powerful and
flexible than the built-in monitor. However, it is easier to
understand and use.

A monitor is an object with mutual exclusion and
synchronization capabilities. Only one thread can execute a
method at a time in the monitor. A thread enters the monitor
by acquiring a lock on the monitor and exits by releasing the
lock. Any object can be a monitor. An object becomes a
monitor once a thread locks it. Locking is implemented using
the synchronized keyword on a method or a block. A thread
must acquire a lock before executing a synchronized method
or block. A thread can wait in a monitor if the condition is not
right for it to continue executing in the monitor.

56

 wait(), notify(), and notifyAll()
Use the wait(), notify(), and notifyAll() methods to facilitate
communication among threads.

The wait(), notify(), and notifyAll() methods must be called in a
synchronized method or a synchronized block on the calling object of
these methods. Otherwise, an IllegalMonitorStateException would
occur.

The wait() method lets the thread wait until some condition occurs.
When it occurs, you can use the notify() or notifyAll() methods to
notify the waiting threads to resume normal execution. The
notifyAll() method wakes up all waiting threads, while notify() picks
up only one thread from a waiting queue.

57

 Example: Using Monitor

synchronized (anObject) {
 try {
 // Wait for the condition to become true
 while (!condition)
 anObject.wait();

 // Do something when condition is true
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 }
}

Task 1

synchronized (anObject) {
 // When condition becomes true
 anObject.notify(); or anObject.notifyAll();
 ...
}

Task 2

 resume

✦ The wait(), notify(), and notifyAll() methods must be called in a
synchronized method or a synchronized block on the receiving
object of these methods. Otherwise, an
IllegalMonitorStateException will occur.

✦ When wait() is invoked, it pauses the thread and simultaneously
releases the lock on the object. When the thread is restarted after
being notified, the lock is automatically reacquired.

✦ The wait(), notify(), and notifyAll() methods on an object are
analogous to the await(), signal(), and signalAll() methods on a
condition.

58

Thread States

New Ready
Thread created

Finished

Running

start()
run()

Wait for target
to finish

join()

run() returns
yield(), or
time out

interrupt()

Wait for time
out

Wait to be
notified

sleep()
wait() Target

finished

notify() or
notifyAll()

Time out

Blocked

Interrupted()

A thread can be in one of five states:
New, Ready, Running, Blocked, or
Finished.

Networking (TCP)

59

60

Client/Server Communications

Server Host

Server socket on port 8000
SeverSocket server =
 new ServerSocket(8000);

A client socket
Socket socket =
 server.accept()

Client Host

Client socket
Socket socket =
 new Socket(host, 8000)

I/O Stream

The server must be running when a client starts.
The server waits for a connection request from a
client. To establish a server, you need to create a
server socket and attach it to a port, which is
where the server listens for connections.

After a server
socket is created,
the server can use
this statement to
listen for
connections.

The client issues
this statement to
request a
connection to a
server.

After the server accepts the
connection, communication
between server and client is
conducted the same as for I/
O streams.

61

Data Transmission through Sockets

int port = 8000;
DataInputStream in;
DataOutputStream out;
ServerSocket server;
Socket socket;

server =new ServerSocket(port);
socket=server.accept();
in=new DataInputStream
 (socket.getInputStream());
out=new DataOutStream
 (socket.getOutputStream());
System.out.println(in.readDouble());
out.writeDouble(aNumber);

int port = 8000;
String host="localhost"
DataInputStream in;
DataOutputStream out;
Socket socket;

socket=new Socket(host, port);
in=new DataInputStream
 (socket.getInputStream());
out=new DataOutputStream
 (socket.getOutputStream());
out.writeDouble(aNumber);
System.out.println(in.readDouble());

ClientServer

Connection
Request

I/O
Streams

InputStream input = socket.getInputStream();
OutputStream output = socket.getOutputStream();

62

A Client/Server Example

Server

radius

DataInputStream

socket.getInputStream

socket

Network

Client

radius

DataOutputStream

socket.getOutputStream

socket

(A)

Server

area

DataOutputStream

socket.getOutputStream

socket

Network

Client

area

DataOutputStream

socket.getOutputStream

socket

(B)

63

The InetAddress Class
Occasionally, you would like to know who is connecting to the
server. You can use the InetAddress class to find the client's host
name and IP address. The InetAddress class models an IP address.
You can use the statement shown below to create an instance of
InetAddress for the client on a socket.

InetAddress inetAddress = socket.getInetAddress();

Next, you can display the client's host name and IP address, as
follows:

System.out.println("Client's host name is " +
 inetAddress.getHostName());
System.out.println("Client's IP Address is " +
 inetAddress.getHostAddress());

64

Serving Multiple Clients
Multiple clients are quite often connected to a single server at the same time.
Typically, a server runs constantly on a server computer, and clients from all over
the Internet may want to connect to it. You can use threads to handle the server's
multiple clients simultaneously. Simply create a thread for each connection. Here is
how the server handles the establishment of a connection:

while (true) {
 Socket socket = serverSocket.accept();
 Thread thread = new ThreadClass(socket);
 thread.start();
}

The server socket can have many connections. Each iteration of the while loop
creates a new connection. Whenever a connection is established, a new thread is
created to handle communication between the server and the new client; and this
allows multiple connections to run at the same time.

Good lucks in final!

65

