
Liang, Introduction to Java Programming

Chapter 2 Primitive Data Types and Operations

Adapted by S.C. Cheung 1

Liang, Introduction to Java Programming

Objectives
•  To write Java programs to perform simple calculations (§2.2).
•  To use identifiers to name variables, constants, methods, and

classes (§2.3).
•  To use variables to store data (§2.4-2.5).
•  To program with assignment statements and assignment expressions

(§2.5).
•  To use constants to store permanent data (§2.6).
•  To declare Java primitive data types: byte, short, int, long, float,

double, and char (§2.7 – 2.10).
•  To use Java operators to write expressions (§2.7 – 2.9).
•  To represent a string using the String type. (§2.10)
•  To obtain input using the JOptionPane input dialog boxes (§2.11).
•  (Optional) To obtain input from console (§2.13).
•  To become familiar with Java documentation, programming style,

and naming conventions (§2.14).
•  To distinguish syntax errors, runtime errors, and logic errors

(§2.15).

Adapted by S.C. Cheung 2

Liang, Introduction to Java Programming

Introducing Programming with an
Example

Listing 2.1 Computing the Area of a
Circle

 This program computes the area of the
circle.

Adapted by S.C. Cheung 3

ComputeArea	

Liang, Introduction to Java Programming

Identifiers
•  An identifier is a sequence of characters that consist of

letters, digits, underscores (_), and dollar signs ($).
•  An identifier must start with a letter, an underscore (_),

or a dollar sign ($). It cannot start with a digit.
–  An identifier cannot be a reserved word. (See Appendix A,
“Java Keywords,” for a list of reserved words).

•  An identifier cannot be true, false, or
null.

•  An identifier can be of any length.

Adapted by S.C. Cheung 4

Liang, Introduction to Java Programming

Variables
// Compute the first area
radius = 1.0;
area = radius * radius * 3.14159;
System.out.println("The area is “ +
area + " for radius "+radius);

// Compute the second area
radius = 2.0;
area = radius * radius * 3.14159;
System.out.println("The area is “ +
area + " for radius "+radius);

Adapted by S.C. Cheung 5

Liang, Introduction to Java Programming

Declaring Variables
int x; // Declare x to be an
 // integer variable;

double radius; // Declare radius to
 // be a double variable;

char a; // Declare a to be a
 // character variable;

Adapted by S.C. Cheung 6

Liang, Introduction to Java Programming

Assignment Statements
x = 1; // Assign 1 to x;

radius = 1.0; // Assign 1.0 to radius;

a = 'A'; // Assign 'A' to a;

Adapted by S.C. Cheung 7

Liang, Introduction to Java Programming

Declaring and Initializing
in One Step

•  int x = 1;

•  double d = 1.4;

Adapted by S.C. Cheung 8

Liang, Introduction to Java Programming

Constants
final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159;

final int SIZE = 3;

Adapted by S.C. Cheung 9

Liang, Introduction to Java Programming

Numerical Data Types

Adapted by S.C. Cheung 10

Name Range Storage Size

byte –27 (-128) to 27–1 (127) 8-bit signed

short –215 (-32768) to 215–1 (32767) 16-bit signed

int –231 (-2147483648) to 231–1 (2147483647) 32-bit signed

long –263 to 263–1 64-bit signed
 (i.e., -9223372036854775808
 to 9223372036854775807)

 float Negative range: 32-bit IEEE 754
 -3.4028235E+38 to -1.4E-45
 Positive range:
 1.4E-45 to 3.4028235E+38

 double Negative range: 64-bit IEEE 754
 -1.7976931348623157E+308 to
 -4.9E-324
 Positive range:
 4.9E-324 to 1.7976931348623157E+308

Liang, Introduction to Java Programming

TIP

An excellent tool to demonstrate how
numbers are stored in a computer was
developed by Richard Rasala. You can access
it at

Adapted by S.C. Cheung 11

h#p://www.ccs.neu.edu/jpt/jpt_2_3/bitdisplay/applet.htm	

Liang, Introduction to Java Programming

Numeric Operators

Adapted by S.C. Cheung 12

Liang, Introduction to Java Programming

Integer Division

+, -, *, /, and %

5 / 2 yields an integer 2.

5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the division)

Adapted by S.C. Cheung 13

Liang, Introduction to Java Programming

Example: Displaying Time
Write a program that obtains hours and
minutes from seconds.

Adapted by S.C. Cheung 14

DisplayTime	

Liang, Introduction to Java Programming

NOTE
Calculations involving floating-point numbers are
approximated because these numbers are not stored
with complete accuracy. For example,

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1. Integers are
stored precisely. Therefore, calculations with integers
yield a precise integer result.
Adapted by S.C. Cheung 15

Liang, Introduction to Java Programming

Number Literals
A literal is a constant value that appears directly
in the program. For example, 34, 1,000,000, and
5.0 are literals in the following statements:

int i = 34;
long x = 1000000;
double d = 5.0;

Adapted by S.C. Cheung 16

Liang, Introduction to Java Programming

Scientific Notation
Floating-point literals can also be specified in
scientific notation, for example, 1.23456e+2,
same as 1.23456e2, is equivalent to 123.456, and
1.23456e-2 is equivalent to 0.0123456. E (or e)
represents an exponent and it can be either in
lowercase or uppercase.

Adapted by S.C. Cheung 17

Liang, Introduction to Java Programming

Arithmetic Expressions

Adapted by S.C. Cheung 18

is translated to

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)

3+ 4x
5

−
10(y− 5)(a+ b+ c)

x
+ 9(4

x
+
9+ x
y
)

Liang, Introduction to Java Programming

Example: Converting Temperatures
Write a program that converts a Fahrenheit degree
to Celsius using the formula:

Adapted by S.C. Cheung 19

FahrenheitToCelsius	

celsius = (59)(fahrenheit −32)

Liang, Introduction to Java Programming

Shortcut Assignment Operators

Adapted by S.C. Cheung 20

Operator Example Equivalent
+= i += 8 i = i + 8

-= f -= 8.0 f = f - 8.0

*= i *= 8 i = i * 8

/= i /= 8 i = i / 8

%= i %= 8 i = i % 8

Liang, Introduction to Java Programming

Increment and
Decrement Operators

Adapted by S.C. Cheung 21

Operator Name Description
++var preincrement The expression (++var) increments var by 1 and evaluates

 to the new value in var after the increment.
var++ postincrement The expression (var++) evaluates to the original value

 in var and increments var by 1.
--var predecrement The expression (--var) decrements var by 1 and evaluates

 to the new value in var after the decrement.
var-- postdecrement The expression (var--) evaluates to the original value

 in var and decrements var by 1.

Liang, Introduction to Java Programming

Increment and
Decrement Operators, cont.

Adapted by S.C. Cheung 22

Liang, Introduction to Java Programming

Increment and
Decrement Operators, cont.

Adapted by S.C. Cheung 23

Using increment and decrement operators makes
expressions short, but it also makes them complex and
difficult to read. Avoid using these operators in expressions
that modify multiple variables, or the same variable for
multiple times such as this: int k = ++i + i.

Liang, Introduction to Java Programming

Assignment Expressions and Assignment
Statements

Prior to Java 2, all the expressions can be used as
statements. Since Java 2, only the following types of
expressions can be statements:
variable op= expression; // Where op is +, -, *, /, or %
++variable;
variable++;
--variable;
variable--;

Adapted by S.C. Cheung 24

Liang, Introduction to Java Programming

Numeric Type Conversion

Consider the following statements:

byte i = 100;

long k = i * 3 + 4;

double d = i * 3.1 + k / 2;

Adapted by S.C. Cheung 25

Liang, Introduction to Java Programming

Conversion Rules
 When performing a binary operation involving two
operands of different types, Java automatically
converts the operand based on the following rules:

1. If one of the operands is double, the other is

converted into double.
2. Otherwise, if one of the operands is float, the other is

converted into float.
3. Otherwise, if one of the operands is long, the other is

converted into long.
4. Otherwise, both operands are converted into int.

Adapted by S.C. Cheung 26

Liang, Introduction to Java Programming

Type Casting
Implicit casting
 double d = 3; (type widening)

Explicit casting
 int i = (int)3.0; (type narrowing)
 int i = (int)3.9; (Fraction part is
truncated)

What is wrong? int x = 5 / 2.0;

Adapted by S.C. Cheung 27

byte, short, int, long, float, double

range increases

Liang, Introduction to Java Programming

Example: Keeping Two Digits After
Decimal Points

Write a program that displays the sales tax with two
digits after the decimal point.

Adapted by S.C. Cheung 28

SalesTax	

Liang, Introduction to Java Programming

Character Data Type

char letter = 'A'; (ASCII)
char numChar = '4'; (ASCII)

char letter = '\u0041'; (Unicode)
char numChar = '\u0034'; (Unicode)

Adapted by S.C. Cheung 29

Four hexadecimal digits.

NOTE: The increment and decrement operators can also be used
on char variables to get the next or preceding Unicode character.
For example, the following statements display character b.

 char ch = 'a';
 System.out.println(++ch);

Liang, Introduction to Java Programming

Unicode Format

Adapted by S.C. Cheung 30

Java characters use Unicode, a 16-bit encoding scheme
established by the Unicode Consortium to support the
interchange, processing, and display of written texts in the
world’s diverse languages. Unicode takes two bytes,
preceded by \u, expressed in four hexadecimal numbers
that run from '\u0000' to '\uFFFF'. So, Unicode can
represent 65535 + 1 characters.

Unicode \u03b1 \u03b2 \u03b3 for three Greek
letters

Liang, Introduction to Java Programming

Example: Displaying Unicodes

Write a program that displays two Chinese
characters and three Greek letters.

Adapted by S.C. Cheung 31

DisplayUnicode	

Liang, Introduction to Java Programming

Escape Sequences for Special Characters

Adapted by S.C. Cheung 32

Description Escape Sequence Unicode

Backspace \b \u0008

Tab \t \u0009

Linefeed \n \u000A

Carriage return \r \u000D

Backslash \\ \u005C

Single Quote \' \u0027

Double Quote \" \u0022

Liang, Introduction to Java Programming

Appendix B: ASCII Character Set

Adapted by S.C. Cheung 33

ASCII Character Set is a subset of the Unicode from \u0000 to \u007f

Liang, Introduction to Java Programming

ASCII Character Set, cont.

Adapted by S.C. Cheung 34

ASCII Character Set is a subset of the Unicode from \u0000 to \u007f

Liang, Introduction to Java Programming

Casting between char and Numeric
Types

Adapted by S.C. Cheung 35

int i = 'a'; // Same as int i = (int)'a';

char c = 97; // Same as char c = (char)97;

Liang, Introduction to Java Programming

The String Type
The char type only represents one character. To represent a string
of characters, use the data type called String. For example,

String message = "Welcome to Java";
String message = new String(“Welcome to Java”);

String is actually a predefined class in the Java library just like the
System class and JOptionPane class. The String type is not a
primitive type. It is known as a reference type. Any Java class can
be used as a reference type for a variable. Reference data types
will be thoroughly discussed in Chapter 6, “Classes and Objects.”
For the time being, you just need to know how to declare a String
variable, how to assign a string to the variable, and how to
concatenate strings.

Adapted by S.C. Cheung 36

Liang, Introduction to Java Programming

String Concatenation
// Three strings are concatenated
String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2
String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B
String s1 = "Supplement" + 'B'; // s becomes
SupplementB

Adapted by S.C. Cheung 37

Liang, Introduction to Java Programming

Obtaining Input
This book provides three ways of obtaining input.

1.  Using JOptionPane input dialogs (§2.15)
2.  Using the JDK 1.5 Scanner class (§2.16)

Adapted by S.C. Cheung 38

Liang, Introduction to Java Programming

Getting Input from Input Dialog Boxes
String string = JOptionPane.showInputDialog(
 null, “Prompting Message”, “Dialog Title”,
 JOptionPane.QUESTION_MESSAGE);

Adapted by S.C. Cheung 39

Liang, Introduction to Java Programming

Two Ways to Invoke the Method
There are several ways to use the showInputDialog method. For
the time being, you only need to know two ways to invoke it.
One is to use a statement as shown in the example:

String string = JOptionPane.showInputDialog(null, x,
 y, JOptionPane.QUESTION_MESSAGE));

where x is a string for the prompting message, and y is a string for
the title of the input dialog box.

The other is to use a statement like this:

String string = JOptionPane.showInputDialog(x);
where x is a string for the prompting message.

Adapted by S.C. Cheung 40

Liang, Introduction to Java Programming

Converting Strings to Integers
The input returned from the input dialog box is a string. If
you enter a numeric value such as 123, it returns “123”.
To obtain the input as a number, you have to convert a
string into a number.

To convert a string into an int value, you can use the static
parseInt method in the Integer class as follows:

int intValue = Integer.parseInt(intString);

where intString is a numeric string such as “123”.

Adapted by S.C. Cheung 41

Liang, Introduction to Java Programming

Converting Strings to Doubles

To convert a string into a double value, you can use the
static parseDouble method in the Double class as follows:

double doubleValue =Double.parseDouble(doubleString);

where doubleString is a numeric string such as “123.45”.

Adapted by S.C. Cheung 42

Liang, Introduction to Java Programming

Example:
 Computing Loan Payments

Adapted by S.C. Cheung 43

ComputeLoan	

This program lets the user enter the interest
rate, number of years, and loan amount and
computes monthly payment and total
payment.

loanAmount ×monthlyInterestRate
1− 1
(1+monthlyInterestRate)numberOfYears×12

Liang, Introduction to Java Programming

Example: Monetary Units

Adapted by S.C. Cheung 44

This program lets the user enter the amount in
decimal representing dollars and cents and output
a report listing the monetary equivalent in single
dollars, quarters, dimes, nickels, and pennies.
Your program should report maximum number of
dollars, then the maximum number of quarters,
and so on, in this order. !

ComputeChange	

Liang, Introduction to Java Programming

Example: Displaying Current Time

Adapted by S.C. Cheung 45

Write a program that displays current time in GMT in the
format hour:minute:second such as 1:45:19.

The currentTimeMillis method in the System class returns
the current time in milliseconds since the midnight, January
1, 1970 GMT. (1970 was the year when the Unix operating
system was formally introduced.) You can use this method
to obtain the current time, and then compute the current
second, minute, and hour as follows.

ShowCurrentTime	

Liang, Introduction to Java Programming

Getting Input Using Scanner

Adapted by S.C. Cheung 46

1. Create a Scanner object
Scanner scanner = new Scanner(System.in);!

2. Use the methods next(), nextByte(), nextShort(),
nextInt(), nextLong(), nextFloat(), nextDouble(), or
nextBoolean() to obtain to a string, byte, short, int,
long, float, double, or boolean value. For example,!

System.out.print("Enter a double value: ");!
Scanner scanner = new Scanner(System.in);!
double d = scanner.nextDouble();

TestScanner	

Optional

Liang, Introduction to Java Programming

Programming Style and
Documentation

•  Appropriate Comments
•  Naming Conventions
•  Proper Indentation and Spacing Lines
•  Block Styles

Adapted by S.C. Cheung 47

Liang, Introduction to Java Programming

Appropriate Comments

Include a summary at the beginning of the program
to explain what the program does, its key features,
its supporting data structures, and any unique
techniques it uses.

Include your name, email address, lab section,
instructor, date, and a brief description at the
beginning of the program.

Adapted by S.C. Cheung 48

Liang, Introduction to Java Programming

Naming Conventions
•  Choose meaningful and descriptive names.
•  Variables and method names:

– Use lowercase. If the name consists of several
words, concatenate all in one, use lowercase
for the first word, and capitalize the first letter
of each subsequent word in the name. For
example, the variables radius and area, and
the method computeArea.

Adapted by S.C. Cheung 49

Liang, Introduction to Java Programming

Variable Naming Convention

•  Name non-boolean variables using nouns or
noun phrases
– courseTitle, section, quota

•  Name boolean variables using adjectives
–  required, compulsory

•  Name methods using verbs or verb phrases
– enroll(student), queue(request),

showMessage(string)

Adapted by S.C. Cheung 50

Liang, Introduction to Java Programming

Naming Conventions, cont.
•  Class names:

–  Capitalize the first letter of each word in the name.
For example, the class name QuickSort,
SavingsAccount, Student.

•  Constants:
–  Capitalize all letters in constants, and use underscores

to connect words. For example, the constant PI and
MAX_VALUE

Adapted by S.C. Cheung 51

Liang, Introduction to Java Programming

Proper Indentation and Spacing
•  Indentation

–  Indent two spaces.

•  Spacing
– Use blank lines to separate segments of the code.

Adapted by S.C. Cheung 52

Liang, Introduction to Java Programming

Block Styles
Use end-of-line style for braces.

Adapted by S.C. Cheung 53

 !

Liang, Introduction to Java Programming

Programming Errors
•  Syntax Errors

– Detected by the compiler
•  Runtime Errors

– Causes the program to abort

•  Logic Errors
– Produces incorrect result

Adapted by S.C. Cheung 54

Liang, Introduction to Java Programming

Syntax Errors
public class ShowSyntaxErrors {
 public static void main(String[] args) {
 i = 30;
 System.out.println(i + 4);
 }
}

Adapted by S.C. Cheung 55

Liang, Introduction to Java Programming

Runtime Errors

public class ShowRuntimeErrors {
 public static void main(String[] args) {
 int i = 1 / 0;
 }
}

Adapted by S.C. Cheung 56

Liang, Introduction to Java Programming

Logic Errors
public class ShowLogicErrors {
 // Determine if a number is between 1 and 100 inclusively

 public static void main(String[] args) {

 // Prompt the user to enter a number

 String input = JOptionPane.showInputDialog(null,

 "Please enter an integer:",

 "ShowLogicErrors", JOptionPane.QUESTION_MESSAGE);

 int number = Integer.parseInt(input);

 // Display the result

 System.out.println("The number is between 1 and 100, " +

 "inclusively? " + ((1 < number) && (number < 100)));

 System.exit(0);

 }

}

Adapted by S.C. Cheung 57

