
1

Lecture 11: Networking in Java (Ch 33)

Adapted by Fangzhen Lin for COMP3021 from Y.

Danial Liang’s PowerPoints for Introduction to

Java Programming, Comprehensive Version, 9/E,

Pearson, 2013.

2

Objectives
 To explain terms: TCP, IP, domain name, domain name server,

stream-based communications, and packet-based communications

(§33.2).

 To create servers using server sockets (§33.2.1) and clients using

client sockets (§33.2.2).

 To implement Java networking programs using stream sockets

(§33.2.3).

 To develop an example of a client/server application (§33.2.4).

 To obtain Internet addresses using the InetAddress class (§33.3).

 To develop servers for multiple clients (§33.4).

 To develop applets that communicate with the server (§33.5).

 To send and receive objects on a network (§33.6).

 To develop an interactive tic-tac-toe game played on the Internet

(§33.7).

3

Client/Server Communications

Server Host

Server socket on port 8000

SeverSocket server =

 new ServerSocket(8000);

A client socket

Socket socket =

 server.accept()

Client Host

Client socket

Socket socket =

 new Socket(host, 8000)

I/O Stream

The server must be running when a client starts.

The server waits for a connection request from a

client. To establish a server, you need to create a

server socket and attach it to a port, which is

where the server listens for connections.

After a server

socket is created,

the server can use

this statement to

listen for

connections.

The client issues

this statement to

request a

connection to a

server.

After the server accepts the

connection, communication

between server and client is

conducted the same as for

I/O streams.

4

Data Transmission through Sockets

int port = 8000;

DataInputStream in;

DataOutputStream out;

ServerSocket server;

Socket socket;

server =new ServerSocket(port);

socket=server.accept();

in=new DataInputStream

 (socket.getInputStream());

out=new DataOutStream

 (socket.getOutputStream());

System.out.println(in.readDouble());

out.writeDouble(aNumber);

int port = 8000;

String host="localhost"

DataInputStream in;

DataOutputStream out;

Socket socket;

socket=new Socket(host, port);

in=new DataInputStream

 (socket.getInputStream());

out=new DataOutputStream

 (socket.getOutputStream());

out.writeDouble(aNumber);

System.out.println(in.readDouble());

ClientServer

Connection

Request

I/O

Streams

InputStream input = socket.getInputStream();

OutputStream output = socket.getOutputStream();

5

A Client/Server Example

 Problem: Write a client to send data to a server. The

server receives the data, uses it to produce a result,

and then sends the result back to the client. The

client displays the result on the console. In this

example, the data sent from the client is the radius of

a circle, and the result produced by

the server is the area of the circle.

radius

Server Client

compute area

area

6

A Client/Server Example, cont.

Server

radius

DataInputStream

socket.getInputStream

socket

Network

Client

radius

DataOutputStream

socket.getOutputStream

socket

(A)

Server

area

DataOutputStream

socket.getOutputStream

socket

Network

Client

area

DataOutputStream

socket.getOutputStream

socket

(B)

7

A Client/Server Example, cont.

radius

Server Client

compute area

area

Server Code Client Code

Note: Start the server, then the client.

Start Server Start Client

http://course.cs.ust.hk/comp3021/slides/html/Server.html
http://course.cs.ust.hk/comp3021/slides/html/Client.html

8

The InetAddress Class
Occasionally, you would like to know who is connecting to the
server. You can use the InetAddress class to find the client's host
name and IP address. The InetAddress class models an IP address.
You can use the statement shown below to create an instance of
InetAddress for the client on a socket.

InetAddress inetAddress = socket.getInetAddress();

Next, you can display the client's host name and IP address, as
follows:

System.out.println("Client's host name is " +

 inetAddress.getHostName());

System.out.println("Client's IP Address is " +

 inetAddress.getHostAddress());

9

Serving Multiple Clients
Multiple clients are quite often connected to a single server at the same time.

Typically, a server runs constantly on a server computer, and clients from all over

the Internet may want to connect to it. You can use threads to handle the server's

multiple clients simultaneously. Simply create a thread for each connection. Here is

how the server handles the establishment of a connection:

while (true) {

 Socket socket = serverSocket.accept();

 Thread thread = new ThreadClass(socket);

 thread.start();

}

The server socket can have many connections. Each iteration of the while loop

creates a new connection. Whenever a connection is established, a new thread is

created to handle communication between the server and the new client; and this

allows multiple connections to run at the same time.

10

Example: Serving Multiple

Clients

Server for Multiple Clients

Note: Start the server first, then start multiple clients.

Start Server

Server

Client n. . .Client 1

A serve socket

on a port
A socket for a

client

A socket for a

client

Start Client

http://course.cs.ust.hk/comp3021/slides/html/MultiThreadServer.html

11

Applet Clients

Due to security constraints, applets can only connect

to the host from which they were loaded. Therefore,

the HTML file must be located on the machine on

which the server is running.

12

Example: Creating Applet Clients

Write an applet that shows the number of visits made to a Web page.

The count should be stored in a file on the server side. Every time the

page is visited or reloaded, the applet sends a request to the server,

and the server increases the count and sends it to the applet. The

applet then displays the new count in a message, such as You are

visitor number 11.

Start Server AppletClient CountServer Start Client

http://course.cs.ust.hk/comp3021/slides/html/AppletClient.html
http://course.cs.ust.hk/comp3021/slides/html/CountServer.html

13

Example: Passing Objects in Network Programs

Write a program that

collects student

information from a

client and send them to

a server. Passing

student information in

an object.

Student Sever

Student Class

Start Server

Note: Start the server first, then the client.

Start Client

Server

student object

in: ObjectInputStream

socket.getInputStream

socket

Network

Client

out: ObjectOutputStream

socket.getOutputStream

socket

out.writeObject(student) in.readObject()

student object

Student Client

http://course.cs.ust.hk/comp3021/slides/html/StudentServer.html
http://course.cs.ust.hk/comp3021/slides/html/Student.html
http://course.cs.ust.hk/comp3021/slides/html/StudentClient.html

14

Case Studies: Distributed

TicTacToe Games

Server

Player 2

Session N...

Player 1

Session 1

Player 2Player 1...

TicTacToeServer

TicTacToeClient

http://course.cs.ust.hk/comp3021/slides/html/TicTacToeServer.html
http://course.cs.ust.hk/comp3021/slides/html/TicTacToeClient.html

15

Distributed TicTacToe, cont.

TicTacToeServer

-

JFrame

-char

token

+getToke

n

+setToke

n

+paintCo

mponet

+mouseC

licked

TicTacToeConstants

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

TicTacToeConstants

+PLAYER1=1: int

+PLAYER2 = 2: int

+PLAYER1_WON = 1: int

+PLAYER2_WON = 2: int

+DRAW = 3: int

+CONTINUE = 4: int

HandleASession

-

TicTacToeClient

-

JApplet

-char

token

+getToke

n

+setToke

n

+paintCo

mponet

+mouseC

licked

Cell

-

TicTacToeServer

+main(args: String[]): void

Runnable

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

HandleASession

-player1: Socket

-player2: Socket

-cell char[][]

-continueToPlay: boolean

+run(): void

-isWon(): boolean

-isFull(): boolean

-sendMove(out:

 DataOuputStream, row: int,

 column: int): void

TicTacToeClient

-myTurn: boolean

-myToken: char

-otherToken: char

-cell: Cell[][]

-continueToPlay: boolean

-rowSelected: int

-columnSelected: int

-isFromServer: DataInputStream

-osToServer: DataOutputStream

-waiting: boolean

+run(): void

-connectToServer(): void

-recieveMove(): void

-sendMove(): void

-receiveInfoFromServer(): void

-waitForPlayerAction(): void

Similar as in

Example 12.7

-

16

Distributed TicTacToe Game
Server

Create a server socket.

Accept connection from the first player and notify the player

is Player 1 with token X.

Accept connection from the second player and notify the

player is Player 2 with token O. Start a thread for the

session.

Player 1

1. Initialize user interface.

2. Request connection to the server and

know which token to use from the server.

3. Get the start signal from the server.

4. Wait for the player to mark a cell, send

the cell's row and column index to the

server.

5. Receive status from the server.

6. If WIN, display the winner; if player 2

wins, receive the last move from player 2.

Break the loop

7. If DRAW, display game is over; break

the loop.

8. If CONTINUE, receive player 2's

selected row and column index and mark

the cell for player 2.

 Player 2

1. Initialize user interface.

2. Request connection to the server and

know which token to use from the server.

3. Receive status from the server.

4. If WIN, display the winner. If player 1

wins, receive player 1's last move, and

break the loop.

5. If DRAW, display game is over, and

receive player 1's last move, and break the

loop.

6. If CONTINUE, receive player 1's

selected row and index and mark the cell

for player 1.

7. Wait for the player to move, and send

the selected row and column to the server.

Handle a session:

1. Tell player 1 to start.

2. Receive row and column of the selected cell from

Player 1.

3. Determine the game status (WIN, DRAW,

CONTINUE). If player 1 wins, or drawn, send the status

(PLAYER1_WON, DRAW) to both players and send

player 1's move to player 2. Exit.

.

4. If CONTINUE, notify player 2 to take the turn, and

send player 1's newly selected row and column index to

player 2.

5. Receive row and column of the selected cell from

player 2.

6. If player 2 wins, send the status (PLAYER2_WON) to

both players, and send player 2's move to player 1. Exit.

7. If CONTINUE, send the status, and send player 2's

newly selected row and column index to Player 1.

 public interface TicTacToeConstants {

 public static int PLAYER1 = 1;

 public static int PLAYER2 = 2;

 public static int PLAYER1_WON = 1;

 public static int PLAYER2_WON = 2;

 public static int DRAW = 3;

 public static int CONTINUE = 4;

}

17

18

JEditorPane

Swing provides a GUI component named javax.swing.JEditorPane

that can be used to display plain text, HTML, and RTF files

automatically. So you don’t have to write code to explicit read data

from the files. JEditorPane is a subclass of JTextComponent. Thus it

inherits all the behavior and properties of JTextComponent.

To display the content of a file, use the setPage(URL) method as

follows:

public void setPage(URL url) throws IOException

JEditorPane generates javax.swing.event.HyperlinkEvent when a

hyperlink in the editor pane is clicked. Through this event, you can

get the URL of the hyperlink and display it using the setPage(url)

method.

19

Example: Creating a Web Browser

Viewing HTML Files Using the JEditorPane.
JEditorPane can be used to display HTML files.

WebBrowser

20

Stream Socket vs. Datagram Socket
 A dedicated point-to-point channel between a client and

server.

 Use TCP (Transmission Control Protocol) for data
transmission.

 Lossless and reliable.

 Sent and received in the same order.

 No dedicated point-to-point channel between a client and
server.

 Use UDP (User Datagram Protocol) for data
transmission.

 May lose data and not 100% reliable.

 Data may not received in the same order as sent.

Stream
socket

Datagram
socket

Companion
Website

