
Midterm	
 Review	

1

Adapted by Fangzhen Lin for COMP3021 from Y.
Danial Liang’s PowerPoints for Introduction to Java
Programming, Comprehensive Version, 9/E,
Pearson, 2013.

Our	
 journey	
 to	
 Java	
 expert	

•  Object	
 and	
 classes	

•  Java	
 treatment	
 of	
 String	

•  Excep>ons	

•  Inheritance	

•  GUI	

•  Abstract	
 class	
 and	
 Interface	

•  Event	
 driven	
 programming	

Class	
 and	
 Object	

Constructors

Circle() {
}

Circle(double newRadius) {
 radius = newRadius;
}

4

Constructors are a special
kind of methods that are
invoked to construct objects.

Constructors, cont.

5

A constructor with no parameters is referred to as a
no-arg constructor.

· Constructors must have the same name as the
class itself.

· Constructors do not have a return type—not even
void.

· Constructors are invoked using the new operator
when an object is created. Constructors play the
role of initializing objects.

Default Constructor

6

A class may be declared without constructors. In
this case, a no-arg constructor with an empty body
is implicitly declared in the class. This constructor,
called a default constructor, is provided
automatically only if no constructors are explicitly
declared in the class.

Differences between Variables of
Primitive Data Types and Object Types  

"

7

Copying Variables of Primitive Data
Types and Object Types

8

Duplica>ng	

content	

Crea>ng	
 an	

alias	

Initialization of Instance Fields

•  Several ways:

1. Explicit initialization
2. Initializer

(or initialization) block
3. Constructors

In the order of
their appearance

Initialization of Instance Fields
•  Explicit initialization: initialization at declaration.

private double salary = 0.0;
private String name = “”;

•  Initializer (or initialization) block:
–  Class declaration can contain arbitrary blocks of codes.
class Employee
{ …
 private int id;
 private static int nextId=1;

 // object initializer block
 {
 id = nextId;
 nextId++;
 }
 …

}

Initialization of Instance Fields

•  Initialization by constructors
class Employee
{

 …
 private int id;
 private static int nextId=1;

 Employee(){
 id = nextId;
 nextId++;
 }

}

Initialization of Instance Fields

•  What happens when a constructor is called

–  All data fields initialized to their default value (0,
false, null)

–  Field initializers and instance initializer blocks are executed
according to their order of appearance

–  Body of the constructor is executed after the body of its
superclass’s constructor

•  Note that a constructor might call another constructor at line 1.

Initialization of Instance Fields

•  When a class is loaded into memory

–  All static data fields initialized to their default value (0,
false, null)

–  Static field initializers and static initializer blocks are
executed in the order of their appearance

–  Note that static fields are initialized once when its parent
class is loaded.

Initialization of Static Fields

Object	
 Ini>aliza>on	
 Summary	

•  Sta>c	
 then	
 instance	

•  Parent	
 then	
 child	

•  For	
 each	
 class	

–  Field	

–  Ini>aliza>on	
 block	

–  Constructor	

class Employee
{ …

 private int id;
 private static int nextId=1;

 // object initializer block
 {
 id = nextId;

 nextId++;
 }

 static {
 //something else
 }

 public static void main(String s[]){
 System.out.println(“”);
 }
}

Java	
 Strings	

Constructing Strings
String newString = new String(stringLiteral);

String message = new String("Welcome to Java");

Since strings are used frequently, Java provides a
shorthand initializer for creating a string:

String message = "Welcome to Java";

17

Strings Are Immutable
A String object is immutable; its contents cannot be changed.
Does the following code change the contents (“Java”) of the
string object?
 String s = "Java";
 s = "HTML";

18

Interned Strings
Since strings are immutable and are frequently
used, to improve efficiency and save memory, the
JVM uses a unique instance for string literals with
the same character sequence. Such an instance is
called interned. For example, the following
statements:

19

Examples

display
 s1 == s2 is false
 s1 == s3 is true

20

A new object is created if you use the
new operator.
If you use the string initializer, no new
object is created if the interned object is
already created.

Flyweight	

Design	

paJern	

Exception Handling

21

Review	
 points	

•  Basic	
 syntax	
 of	
 declaring/checking	
 a	
 generic	

type.	

•  Difference	
 between	
 checked/unchecked	

excep>ons	

•  The	
 excep>on	
 handling	
 mechanism	

– “Stack	
 unwinding”	
 sequence	

– Polymorphic	
 matching	

	

Exception Types

23

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Checked Exceptions vs. Unchecked
Exceptions

24

RuntimeException, Error and their subclasses are
known as unchecked exceptions. All other
exceptions are known as checked exceptions,
meaning that the compiler forces the programmer
to check and deal with the exceptions. !

Catching Exceptions

try {
 statements; // Statements that may throw exceptions
}
catch (Exception1 exVar1) {
 handler for exception1;
}
catch (Exception2 exVar2) {
 handler for exception2;
}
...
catch (ExceptionN exVar3) {
 handler for exceptionN;
}
finally {
 finalStatements;
}

25

Summary	
 of	
 Excep>on	
 Handling	

•  When	
 an	
 excep>on	
 is	
 thrown	

1.  Check	
 local	
 “catch”	
 first	
 where	
 “throws”	
 is	
 executed	

2.  Match	
 exact	
 “catch”	
 first	

3.  If	
 no	
 match,	
 match	
 “catch”	
 of	
 super	
 types	

1.  Match	
 only	
 once!	
 Only	
 one	
 “catch”	
 block	
 is	
 executed	
 for	
 mul>ple	
 catches.	

4.  If	
 no	
 match,	
 	

•  Execute	
 the	
 “finally	
 block”.	
 Excep>on	
 thrown	
 in	
 “finally	
 block”	
 will	
 be	
 the	
 only	

excep>on	
 passed	
 to	
 caller	

•  Go	
 to	
 caller,	
 repeat	
 2-­‐4,	
 un>l	
 “main”.	

•  When	
 matched	

–  Resume	
 normal	
 flow	
 of	
 execu>on	
 if	
 no	
 throwing	
 in	
 “catch”	
 blocks	

–  Or	
 return	
 to	
 caller	
 at	
 throwing	

26

Declaring Exceptions
Every method must state the types of checked
exceptions it might throw. This is known as
declaring exceptions.

public void myMethod()
 throws IOException

public void myMethod()
 throws IOException, OtherException

27

Throwing Exceptions
When the program detects an error, the program
can create an instance of an appropriate exception
type and throw it. This is known as throwing an
exception. Here is an example,

throw new TheException();

TheException ex = new TheException();
throw ex;

28

Rethrowing Exceptions
try {
 statements;
}
catch(TheException ex) {
 perform operations before exits;
 throw ex; // throw new TheException();
}

29

Be Careful with Multiple
Exceptions

●  Note that the following will produce a compiling error. Why?
 try {…}
 catch (Exception e3) {…}

 catch (ArithmeticException e1){…}
 catch (IOException e2) {…}

MultipleException

Catch or Declare Checked Exceptions
Java forces you to deal with checked exceptions. If a method declares a
checked exception (i.e., an exception other than Error or
RuntimeException), you must invoke it in a try-catch block or declare to
throw the exception in the calling method. For example, suppose that
method p1 invokes method p2 and p2 may throw a checked exception (e.g.,
IOException), you have to write the code as shown in (a) or (b).

31

void p1() {
 try {
 p2();
 }
 catch (IOException ex) {
 ...
 }
}

(a)

(b)

void p1() throws IOException {

 p2();

}

Defining Custom Exception Classes

32

✦  Use the exception classes in the API whenever possible.

✦  Define custom exception classes if the predefined
classes are not sufficient.

✦  Define custom exception classes by extending
Exception or a subclass of Exception.

Inheritance	

Are superclass’s Constructor Inherited?

34

No. They are not inherited.

They are invoked explicitly or implicitly.

Explicitly using the super keyword.

A constructor is used to construct an instance of a class.
Unlike properties and methods, a superclass's
constructors are not inherited in the subclass. They can
only be invoked from the subclasses' constructors, using
the keyword super. If the keyword super is not explicitly
used, the superclass's no-arg constructor is
automatically invoked.

Superclass’s Constructor Is Always Invoked

35

A constructor may invoke an overloaded constructor or its
superclass’s constructor. If none of them is invoked
explicitly, the compiler puts super() as the first statement
in the constructor. For example,

Using the Keyword super

•  To call a superclass constructor
•  To call a superclass method

36

The keyword super refers to the superclass
of the class in which super appears. This
keyword can be used in two ways:

CAUTION

37

You must use the keyword super to call the
superclass constructor. Invoking a
superclass constructor’s name in a subclass
causes a syntax error. Java requires that the
statement that uses the keyword super
appear first in the constructor.

Overriding Methods in the Superclass

38

A subclass inherits methods from a superclass. Sometimes it is
necessary for the subclass to modify the implementation of a method
defined in the superclass. This is referred to as method overriding.

public class Circle extends GeometricObject {

 // Other methods are omitted

 /** Override the toString method defined in GeometricObject */
 public String toString() {
 return super.toString() + "\nradius is " + radius;
 }

}

Polymorphism, Dynamic Binding and Generic Programming"

When the method m(Object x) is executed, the
argument x’s toString method is invoked. x
may be an instance of GraduateStudent,
Student, Person, or Object. Classes
GraduateStudent, Student, Person, and Object
have their own implementation of the toString
method. Which implementation is used will be
determined dynamically by the Java Virtual
Machine at runtime. This capability is known
as dynamic binding.

39

public class PolymorphismDemo {
 public static void main(String[] args) {
 m(new GraduateStudent());
 m(new Student());
 m(new Person());
 m(new Object());
 }

 public static void m(Object x) {
 System.out.println(x.toString());
 }
}

class GraduateStudent extends Student {
}

class Student extends Person {
 public String toString() {
 return "Student";
 }
}

class Person extends Object {
 public String toString() {
 return "Person";
 }
}

Method m takes a parameter
of the Object type. You can
invoke it with any object.

An object of a subtype can be used wherever its
supertype value is required. This feature is
known as polymorphism.

Accessibility Summary

40

A Subclass Cannot Weaken the Accessibility

41

A subclass may override a protected
method in its superclass and change its
visibility to public. However, a subclass
cannot weaken the accessibility of a
method defined in the superclass. For
example, if a method is defined as public
in the superclass, it must be defined as
public in the subclass.

Abstract	
 class	
 and	
 Interface	

What’s	
 an	
 abstract	
 class?	

•  It	
 is	
 a	
 special	
 kind	
 of	
 class	
 solely	
 used	
 for	

sharing/reusing	
 data/behavior	
 for	
 subclasses	

•  Difference	
 from	
 the	
 classes	
 you	
 have	
 seen	
 so	

far	

– Cannot	
 be	
 “newed”.	
 	

– Can	
 own	
 “abstract	
 methods”.	
 	

•  Analogy:	

– Special	
 molds	
 used	
 to	
 make	
 other	
 molds	
 not	
 to	

make	
 cakes	

43

What’s	
 an	
 abstract	
 method?	

•  We	
 need	
 “abstract	
 classes”	
 for	
 reusing	
 data/
behavior	
 for	
 subclasses.	

•  Oaen	
 we	
 only	
 say	
 what	
 a	
 method	
 looks	
 like	

and	
 don’t	
 provide	
 any	
 defini>on	

– No	
 need	
 à	
 subclass	
 will	
 override	

–  Impossible	
 à	
 depends	
 on	
 what	
 subclass	
 does	

•  Such	
 methods	
 are	
 “abstract”	
 methods	
 with	

the	
 abstract	
 modifier.	

44

What’s	
 an	
 interface?	

•  The	
 single	
 most	
 important	
 concept	
 in	
 the	
 Java	

language	

•  Think	
 of	
 interface	
 as	
 a	
 special	
 type	
 of	
 abstract	

class	

– Add	
 addi>onal	
 roles/personality	
 to	
 a	
 class	

– To	
 sa>sfy	
 the	
 need	
 of	
 mul>ple	
 inheritance	
 but	
 no	

black	
 diamond.	
 	

– Key	
 for	
 building	
 massive	
 scale	
 Java	
 libraries	

45

Define an Interface
To distinguish an interface from a class, Java uses the
following syntax to declare an interface:

46

public interface InterfaceName {
 constant declarations;
 method signatures;
}	

Example:
public interface Edible {
 /** Describe how to eat */

 public abstract String howToEat();
}

Interfaces vs. Abstract Classes"
In an interface, the data must be constants; an abstract class can
have all types of data.

Each method in an interface has only a signature without
implementation; an abstract class can have concrete methods.

47

Variables Constructors Methods

Abstract
class No restrictions Constructors are invoked by subclasses

through constructor chaining. An abstract
class cannot be instantiated using the new
operator.

No restrictions.

Interface All variables
must be public
static final

No constructors. An interface cannot be
instantiated using the new operator. All methods must be

public abstract
instance methods

GUI	
 Basics	

•  You	
 will	
 not	
 need	
 to	
 remember	
 APIs.	

•  How	
 to	
 compose	
 Swing	
 widgets	
 is	
 not	
 covered	

in	
 the	
 midterm.	
 	

Event-­‐driven	
 programming	

Review	
 points	

•  Know	
 how	
 to	
 handle	
 events	
 for	
 Swing	

widgets,	
 if	
 APIs	
 are	
 given.	

•  Understand	
 the	
 basic	
 syntax	
 and	
 rules	
 of	
 inner	

classes	

•  Understand	
 the	
 basic	
 syntax	
 of	
 anonymous	

inner	
 classes	

Procedural vs. Event-Driven
Programming

•  Procedural programming is executed in
procedural order. （Also called imperative)

•  In event-driven programming, code is executed
upon activation of events.

51

The Delegation Model

52

The Delegation Model: Example

53

JButton jbt = new JButton("OK");

ActionListener listener = new OKListener();!

jbt.addActionListener(listener);

Inner Classes, cont.

54

Inner Classes (cont.)
•  Inner classes can make programs simple

and concise.

•  An inner class supports the work of its
containing outer class and is compiled
into a class named OuterClassName
$InnerClassName.class. For example, the
inner class InnerClass in OuterClass is
compiled into OuterClass
$InnerClass.class.

55

Anonymous Inner Classes

Inner class listeners can be shortened using anonymous
inner classes. An anonymous inner class is an inner
class without a name. It combines declaring an inner
class and creating an instance of the class in one step.
An anonymous inner class is declared as follows:

56

new SuperClassName/InterfaceName() {
 // Implement or override methods in superclass or interface
 // Other methods if necessary
}

Good	
 luck	
 with	
 your	
 midterm	

