
Chapter 5 Methods

1

Objectives
•  To declare methods, invoke methods, and pass arguments to

a method (§5.2-5.4).
•  To use method overloading and know ambiguous

overloading (§5.5).
•  To determine the scope of local variables (§5.6).
•  To learn the concept of method abstraction (§5.7).
•  To know how to use the methods in the Math class (§5.8).
•  To design and implement methods using stepwise

refinement (§5.10).
•  To group classes into packages (§5.11 Optional).

2

Introducing Methods

3

A method is a collection of statements that are
grouped together to perform an operation.

Introducing Methods, cont.

4

•  Method signature is the combination of the
method name and the parameter list.

•  The variables defined in the method header are
known as formal parameters.

•  When a method is invoked, you pass a value to
the parameter. This value is referred to as actual
parameter or argument.

5

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

i is declared and initialized

The main method
is invoked.

i: 5

animation

6

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

j is declared and initialized

The main method
is invoked.

j: 2
i: 5

animation

7

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Declare k

The main method
is invoked.

Space required for the
main method

 k:
j: 2
i: 5

animation

8

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Invoke max(i, j)

The main method
is invoked.

Space required for the
main method

 k:
j: 2
i: 5

animation

9

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

pass the values of i and j to num1
and num2

The max method is
invoked.

num2: 2
num1: 5

Space required for the
main method

 k:
j: 2
i: 5

animation

10

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

pass the values of i and j to num1
and num2

The max method is
invoked.

 result:

num2: 2
num1: 5

Space required for the
main method

 k:
j: 2
i: 5

animation

11

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

(num1 > num2) is true

The max method is
invoked.

 result:

num2: 2
num1: 5

Space required for the
main method

 k:
j: 2
i: 5

animation

12

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Assign num1 to result

The max method is
invoked.

Space required for the
max method
 result: 5

num2: 2
num1: 5

Space required for the
main method

 k:
j: 2
i: 5

animation

13

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Return result and assign it to k

The max method is
invoked.

Space required for the
max method
 result: 5

num2: 2
num1: 5

Space required for the
main method
 k:5

j: 2
i: 5

animation

14

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Execute print statement

The main method
is invoked.

Space required for the
main method
 k:5

j: 2
i: 5

animation

Call Stacks

15

The main method
is invoked.

Space required for the
main method
 k:

j: 2
i: 5

The max method is
invoked.

Space required for the
max method
 result: 5

num2: 2
num1: 5

The max method is
finished and the return
value is sent to k.

The main method
is finished.

Stack is empty

Space required for the
main method
 k:

j: 2
i: 5

Space required for the
main method
 k: 5

j: 2
i: 5

Ambiguous Invocation

Sometimes there may be two or more
possible matches for an invocation of a
method, but the compiler cannot determine
the most specific match. This is referred to
as ambiguous invocation. Ambiguous
invocation is a compilation error.

16

Ambiguous Invocation
public class AmbiguousOverloading {
 public static void main(String[] args) {
 System.out.println(max(1, 2));
 }

 public static double max(int num1, double num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
 }

 public static double max(double num1, int num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
 }
}

17

Scope of Local Variables
A local variable: a variable defined inside a

method.
Scope: the part of the program where the

variable can be referenced.
The scope of a local variable starts from its

declaration and continues to the end of the
block that contains the variable. A local
variable must be declared before it can be
used.

18

Scope of Local Variables, cont.
A variable declared in the initial action part of a for loop
header has its scope in the entire loop. But a variable
declared inside a for loop body has its scope limited in the
loop body from its declaration and to the end of the block
that contains the variable.

19

Scope of Local Variables, cont.

20

The Math Class
•  Class constants:

– PI
– E

•  Class methods:
– Trigonometric Methods
– Exponent Methods
– Rounding Methods
– min, max, abs, and random Methods

21

Trigonometric Methods
•  sin(double a)
•  cos(double a)

•  tan(double a)
•  acos(double a)

•  asin(double a)

•  atan(double a)

22

Radians

toRadians(90)

Examples:

Math.sin(0) returns 0.0 !
Math.sin(Math.PI / 6)

returns 0.5 !
Math.sin(Math.PI / 2)

returns 1.0!
Math.cos(0) returns 1.0!
Math.cos(Math.PI / 6)

returns 0.866 !
Math.cos(Math.PI / 2)

returns 0

Exponent Methods
•  exp(double a)

Returns e raised to the power of a.

•  log(double a)
Returns the natural logarithm of a.

•  log10(double a)
Returns the 10-based logarithm of
a.

•  pow(double a, double b)
Returns a raised to the power of b.

•  sqrt(double a)
Returns the square root of a.

23

Examples:

Math.exp(1) returns 2.71 !
Math.log(2.71) returns 1.0 !
Math.pow(2, 3) returns 8.0 !
Math.pow(3, 2) returns 9.0 !
Math.pow(3.5, 2.5) returns

22.91765 !
Math.sqrt(4) returns 2.0!
Math.sqrt(10.5) returns 3.24

Rounding Methods
•  double ceil(double x)

x rounded up to its nearest integer. This integer is returned as a double
value.

•  double floor(double x)
x is rounded down to its nearest integer. This integer is returned as a

double value.

•  double rint(double x)
x is rounded to its nearest integer. If x is equally close to two integers,

the even one is returned as a double.

•  int round(float x)
Return (int)Math.floor(x+0.5).

•  long round(double x)
Return (long)Math.floor(x+0.5). !

24

The random Method
Generates a random double value greater than or equal to 0.0 and less
than 1.0 (0 <= Math.random() < 1.0).

25

Examples:

In general,

Case Study: Generating Random
Characters, cont.

As discussed in Section 2.9.4, all numeric operators
can be applied to the char operands. The char
operand is cast into a number if the other operand
is a number or a character. So, the preceding
expression can be simplified as follows:

'a' + Math.random() * ('z' - 'a' + 1)

So a random lowercase letter is

(char)('a' + Math.random() * ('z' - 'a' + 1))
26

The RandomCharacter Class
// RandomCharacter.java: Generate random characters!
public class RandomCharacter {!
 /** Generate a random character between ch1 and ch2 */!
 public static char getRandomCharacter(char ch1, char ch2) {!
 return (char)(ch1 + Math.random() * (ch2 - ch1 + 1));!
 }!
 !
 /** Generate a random lowercase letter */!
 public static char getRandomLowerCaseLetter() {!
 return getRandomCharacter('a', 'z');!
 }!
 !
 /** Generate a random uppercase letter */!
 public static char getRandomUpperCaseLetter() {!
 return getRandomCharacter('A', 'Z');!
 }!
 !
 /** Generate a random digit character */!
 public static char getRandomDigitCharacter() {!
 return getRandomCharacter('0', '9');!
 }!
 !
 /** Generate a random character */!
 public static char getRandomCharacter() {!
 return getRandomCharacter('\u0000', '\uFFFF');!
 }!
}

27

Package
There are three reasons for using packages:

1.  To avoid naming conflicts. When you develop reusable

classes to be shared by other programmers, naming
conflicts often occur. To prevent this, put your classes
into packages so that they can be referenced through
package names.

2.  To distribute software conveniently. Packages group
related classes so that they can be easily distributed.

3.  To protect classes. Packages provide protection so that
the protected members of the classes are accessible to
the classes in the same package, but not to the external
classes.

28

Optional

Package-Naming Conventions
Packages are hierarchical, and you can have packages within
packages. For example, java.lang.Math indicates that Math is a class
in the package lang and that lang is a package in the package java.
Levels of nesting can be used to ensure the uniqueness of package
names.

Choosing a unique name is important because your package may be
used on the Internet by other programs. Java designers recommend
that you use your Internet domain name in reverse order as a
package prefix. Since Internet domain names are unique, this
prevents naming conflicts. Suppose you want to create a package
named mypackage on a host machine with the Internet domain
name prenhall.com. To follow the naming convention, you would
name the entire package com.prenhall.mypackage. By convention,
package names are all in lowercase.

29

Package Directories
Java expects one-to-one mapping of the package name and the file
system directory structure. For the package named
com.prenhall.mypackage, you must create a directory, as shown in
the figure. In other words, a package is actually a directory that
contains the bytecode of the classes.

30

com.prenhall.mypackage

The com directory does not have to be the root
directory. In order for Java to know where
your package is in the file system, you must
modify the environment variable classpath so
that it points to the directory in which your
package resides.

Setting classpath Environment

31

The com directory does not have to be the root directory. In order for Java to know where
your package is in the file system, you must modify the environment variable classpath so
that it points to the directory in which your package resides.

Suppose the com directory is under c:\book. The following line adds c:\book into the
classpath:

classpath=.;c:\book;

The period (.) indicating the current directory is always in classpath. The directory c:\book
is in classpath so that you can use the package com.prenhall.mypackage in the program.

Putting Classes into Packages

32

Every class in Java belongs to a package. The class is added to the package when
it is compiled. All the classes that you have used so far in this book were placed in
the current directory (a default package) when the Java source programs were
compiled. To put a class in a specific package, you need to add the following line
as the first noncomment and nonblank statement in the program:

package packagename;

Listing 5.8 Putting Classes into Packages

33

Problem
This example creates a class named Format and places it in the package
com.prenhall.mypackage. The Format class contains the format(number,
numOfDecimalDigits) method that returns a new number with the specified
number of digits after the decimal point. For example, format(10.3422345, 2)
returns 10.34, and format(-0.343434, 3) returns –0.343.

Solution
1. Create Format.java as follows and save it into c:\book\com\prenhall
\mypackage.

// Format.java: Format number.
package com.prenhall.mypackage;

public class Format {
 public static double format(
 double number, int numOfDecimalDigits) {
 return Math.round(number * Math.pow(10, numOfDecimalDigits)) /
 Math.pow(10, numOfDecimalDigits);
 }
}

2. Compile Format.java. Make sure Format.class is in c:\book\com\prenhall
\mypackage.

Using Classes from Packages

34

There are two ways to use classes from a package.
•  One way is to use the fully qualified name of the class. For example, the fully
qualified name for JOptionPane is javax.swing.JOptionPane. For Format in the
preceding example, it is com.prenhall.mypackage.Format. This is convenient if the
class is used a few times in the program.
•  The other way is to use the import statement. For example, to import all the
classes in the javax.swing package, you can use
 import javax.swing.*;

An import that uses a * is called an import on demand declaration. You can also
import a specific class. For example, this statement imports
javax.swing.JOptionPane:

import javax.swing.JOptionPane;

The information for the classes in an imported package is not read in at compile time
or runtime unless the class is used in the program. The import statement simply tells
the compiler where to locate the classes.

Listing 5.9 Using Packages

35

Problem
This example shows a program that uses the Format class in the
com.prenhall.mypackage.mypackage package.

Solution
1. Create TestFormatClass.java as follows and save it into c:\book.
The following code gives the solution to the problem.

// TestFormatClass.java: Demonstrate using the Format class
import com.prenhall.mypackage.Format;

public class TestFormatClass {
 /** Main method */
 public static void main(String[] args) {
 System.out.println(Format.format(10.3422345, 2));
 System.out.println(Format.format(-0.343434, 3));
 }
}

