
1

Lecture 1: Introduction to Java

(Chapter 1)

Adapted by Fangzhen Lin for COMP3021 from Y.

Danial Liang’s PowerPoints for Introduction to Java

Programming, Comprehensive Version, 9/E,

Pearson, 2013.

2

Objectives
 To describe the relationship between Java and the World Wide Web

(§1.5).

 To understand the meaning of Java language specification, API,
JDK, and IDE (§1.6).

 To write a simple Java program (§1.7).

 To display output on the console (§1.7).

 To explain the basic syntax of a Java program (§1.7).

 To create, compile, and run Java programs (§1.8).

 To display output using the JOptionPane message dialog boxes
(§1.9).

 To become familiar with Java programming style and documentation
(§1.10).

 To explain the differences between syntax errors, runtime errors, and
logic errors (§1.11).

3

How Data is Stored?
Data of various kinds, such as numbers,
characters, and strings, are encoded as a
series of bits (zeros and ones). Computers
use zeros and ones because digital devices
have two stable states, which are referred to
as zero and one by convention. The
programmers need not to be concerned about
the encoding and decoding of data, which is
performed automatically by the system based
on the encoding scheme. The encoding
scheme varies. For example, character ‘J’ is
represented by 01001010 in one byte. A
small number such as three can be stored in a
single byte. If computer needs to store a
large number that cannot fit into a single
byte, it uses a number of adjacent bytes. No
two data can share or split a same byte. A
byte is the minimum storage unit.

.

.

.

2000

2001

2002

2003

2004

.

.

.

01001010

01100001

01110110

01100001

00000011

Memory content

Memory address

Encoding for character ‘J’

Encoding for character ‘a’

Encoding for character ‘v’

Encoding for character ‘a’

Encoding for number 3

4

Programs

Computer programs, known as software, are instructions to

the computer.

You tell a computer what to do through programs. Without

programs, a computer is an empty machine. Computers do

not understand human languages, so you need to use

computer languages to communicate with them.

Programs are written using programming languages.

5

Popular High-Level Languages

Language Description

Ada

BASIC

C

C++

C#

COBOL

FORTRAN

Java

Pascal

Python

Visual

Basic

Named for Ada Lovelace, who worked on mechanical general-purpose computers. The Ada

language was developed for the Department of Defense and is used mainly in defense projects.

Beginner’s All-purpose Symbolic Instruction Code. It was designed to be learned and used easily

by beginners.

Developed at Bell Laboratories. C combines the power of an assembly language with the ease of

use and portability of a high-level language.

C++ is an object-oriented language, based on C.

Pronounced “C Sharp.” It is a hybrid of Java and C++ and was developed by Microsoft.

COmmon Business Oriented Language. Used for business applications.

FORmula TRANslation. Popular for scientific and mathematical applications.

Developed by Sun Microsystems, now part of Oracle. It is widely used for developing platform-

independent Internet applications.

Named for Blaise Pascal, who pioneered calculating machines in the seventeenth century. It is a

simple, structured, general-purpose language primarily for teaching programming.

A simple general-purpose scripting language good for writing short programs.

Visual Basic was developed by Microsoft and it enables the programmers to rapidly develop

graphical user interfaces.

6

Why Java?

The answer is that Java enables users to develop and

deploy applications on the Internet for servers, desktop

computers, and small hand-held devices. The future of

computing is being profoundly influenced by the Internet,

and Java promises to remain a big part of that future. Java

is the Internet programming language.

Java is a general purpose programming language.

Java is the Internet programming language.

7

Java, Web, and Beyond

Java can be used to develop Web

applications.

Java Applets

Java Web Applications

Java can also be used to develop applications

for hand-held devices such as Palm and cell

phones

8

Examples of Java’s Versatility (Applets)

9

PDA and Cell Phone

10

Java’s History
 James Gosling and Sun Microsystems

Oak

 Java, May 20, 1995, Sun World

HotJava

– The first Java-enabled Web browser

Early History Website:

http://www.java.com/en/javahistory/index.jsp

http://www.java.com/en/javahistory/index.jsp

11

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

www.cs.armstrong.edu/liang/JavaCharacteristics.pdf

http://www.cs.armstrong.edu/liang/JavaCharacteristics.pdf

12

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Java is partially modeled on C++, but greatly

simplified and improved. Some people refer to

Java as "C++--" because it is like C++ but

with more functionality and fewer negative

aspects.

13

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Java is inherently object-oriented.

Although many object-oriented languages

began strictly as procedural languages,

Java was designed from the start to be

object-oriented. Object-oriented

programming (OOP) is a popular

programming approach that is replacing

traditional procedural programming

techniques.

One of the central issues in software

development is how to reuse code. Object-

oriented programming provides great

flexibility, modularity, clarity, and

reusability through encapsulation,

inheritance, and polymorphism.

14

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Distributed computing involves several

computers working together on a network.

Java is designed to make distributed

computing easy. Since networking

capability is inherently integrated into

Java, writing network programs is like

sending and receiving data to and from a
file.

15

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

You need an interpreter to run Java

programs. The programs are compiled into

the Java Virtual Machine code called

bytecode. The bytecode is machine-

independent and can run on any machine

that has a Java interpreter, which is part of

the Java Virtual Machine (JVM).

16

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Java compilers can detect many problems

that would first show up at execution time

in other languages.

Java has eliminated certain types of error-

prone programming constructs found in

other languages.

Java has a runtime exception-handling

feature to provide programming support

for robustness.

17

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Java implements several security

mechanisms to protect your system against

harm caused by stray programs.

18

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Write once, run anywhere

With a Java Virtual Machine (JVM),
you can write one program that will
run on any platform.

19

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Because Java is architecture neutral,
Java programs are portable. They can
be run on any platform without being
recompiled.

20

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Java runs slightly slower than C++

Extracted from: C++ vs. Java 1.6 - A fair benchmark

http://www.irrlicht3d.org/pivot/entry.php?id=446

21

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Multithread programming is smoothly
integrated in Java, whereas in other
languages you have to call procedures
specific to the operating system to enable
multithreading.

22

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Java was designed to adapt to an evolving
environment. New code can be loaded on the
fly without recompilation. There is no need for
developers to create, and for users to install,
major new software versions. New features can

be incorporated transparently as needed.

23

JDK Versions

 JDK 1.02 (1995)

 JDK 1.1 (1996)

 JDK 1.2 (1998)

 JDK 1.3 (2000)

 JDK 1.4 (2002)

 JDK 1.5 (2004) a. k. a. JDK 5 or Java 5

 JDK 1.6 (2006) a. k. a. JDK 6 or Java 6

 JDK 1.7 (2011) a. k. a. JDK 7 or Java 7

24

JDK Editions

 Java Standard Edition (J2SE)
– J2SE can be used to develop client-side

standalone applications or applets.

 Java Enterprise Edition (J2EE)
– J2EE can be used to develop server-side

applications such as Java servlets, Java
ServerPages, and Java ServerFaces.

 Java Micro Edition (J2ME).
– J2ME can be used to develop applications for

mobile devices such as cell phones.

We use J2SE to introduce Java programming.

25

Popular Java IDEs

NetBeans

 Eclipse: used for this course and taught in the lab.

26

A Simple Java Program

//This program prints Welcome to Java!

public class Welcome {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Welcome

Listing 1.1

http://course.cs.ust.hk/comp3021/slides/html/Welcome.html
http://course.cs.ust.hk/comp3021/slides/html/Welcome.html

27

Creating, Compiling, and

Running Programs

Source Code

Create/Modify Source Code

Compile Source Code

i.e., javac Welcome.java

Bytecode

Run Byteode

i.e., java Welcome

Result

If compilation errors

If runtime errors or incorrect result

public class Welcome {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");
 }
}

…

Method Welcome()

 0 aload_0

 …

Method void main(java.lang.String[])

 0 getstatic #2 …

 3 ldc #3 <String "Welcome to

Java!">

 5 invokevirtual #4 …

 8 return

Saved on the disk

stored on the disk

Source code (developed by the programmer)

Byte code (generated by the compiler for JVM

to read and interpret, not for you to understand)

28

Compiling Java Source Code
You can port a source program to any machine with appropriate
compilers. The source program must be recompiled, however, because
the object program can only run on a specific machine. Nowadays
computers are networked to work together. Java was designed to run
object programs on any platform. With Java, you write the program
once, and compile the source program into a special type of object
code, known as bytecode. The bytecode can then run on any computer
with a Java Virtual Machine, as shown below. Java Virtual Machine is
a software that interprets Java bytecode.

Java Bytecode

Java Virtual
Machine

Any
Computer

29

Anatomy of a Java Program

Class name

Main method

Statements

Statement terminator

Reserved words

Comments

Blocks

30

//This program prints Welcome to Java!

public class Welcome {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Class Name

Every Java program must have at least one class.

Each class has a name. By convention, class names

start with an uppercase letter. In this example, the

class name is Welcome.

31

//This program prints Welcome to Java!

public class Welcome {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Main Method

Line 2 defines the main method. In order to run a

class, the class must contain a method named main.

The program is executed from the main method.

32

//This program prints Welcome to Java!

public class Welcome {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Statement
A statement represents an action or a sequence of

actions. The statement System.out.println("Welcome to

Java!") in the program in Listing 1.1 is a statement to

display the greeting "Welcome to Java!“.

33

//This program prints Welcome to Java!

public class Welcome {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Statement Terminator

Every statement in Java ends with a semicolon (;).

34

//This program prints Welcome to Java!

public class Welcome {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Reserved words

Reserved words or keywords are words that have a

specific meaning to the compiler and cannot be used for

other purposes in the program. For example, when the

compiler sees the word class, it understands that the word

after class is the name for the class.

35

Blocks

A pair of braces in a program forms a block that groups

components of a program.

public class Test {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Class block

Method block

36

Displaying Text in a Message

Dialog Box

you can use the showMessageDialog method in the

JOptionPane class. JOptionPane is one of the many

predefined classes in the Java system, which can be

reused rather than “reinventing the wheel.”

WelcomeInMessageDialogBox

https://course.cse.ust.hk/comp3021/slides/html/WelcomeInMessageDialogBox.html

37

The showMessageDialog Method

JOptionPane.showMessageDialog(null,

 "Welcome to Java!",

 "Display Message",

 JOptionPane.INFORMATION_MESSAGE);

38

Two Ways to Invoke the Method

There are several ways to use the showMessageDialog

method. For the time being, all you need to know are

two ways to invoke it.

One is to use a statement as shown in the example:

JOptionPane.showMessageDialog(null, x,

 y, JOptionPane.INFORMATION_MESSAGE);

where x is a string for the text to be displayed, and y is

a string for the title of the message dialog box.

The other is to use a statement like this:

JOptionPane.showMessageDialog(null, x);

where x is a string for the text to be displayed.

39

Programming Style and

Documentation

Appropriate Comments

Naming Conventions

Proper Indentation and Spacing

Lines

Block Styles

40

Appropriate Comments

Include a summary at the beginning of the
program to explain what the program does, its key
features, its supporting data structures, and any
unique techniques it uses.

Include your name, class section, instructor, date,
and a brief description at the beginning of the
program.

41

Naming Conventions

Choose meaningful and descriptive names.

Class names:

– Capitalize the first letter of each word in the

name. For example, the class name

ComputeExpression.

42

Proper Indentation and Spacing

 Indentation

– Indent two spaces.

Spacing

– Use blank line to separate segments of the code.

43

Block Styles

Use end-of-line style for braces.

public class Test

{

 public static void main(String[] args)

 {

 System.out.println("Block Styles");

 }

}

public class Test {

 public static void main(String[] args) {

 System.out.println("Block Styles");

 }

}

End-of-line

style

Next-line

style

44

Programming Errors

Syntax Errors

– Detected by the compiler

Runtime Errors

– Causes the program to abort

Logic Errors

– Produces incorrect result

45

Syntax Errors
public class ShowSyntaxErrors {

 public static main(String[] args) {

 System.out.println("Welcome to Java);

 }

}

46

Runtime Errors

public class ShowRuntimeErrors {

 public static void main(String[] args) {

 System.out.println(1 / 0);

 }

}

47

Logic Errors

public class ShowLogicErrors {

 public static void main(String[] args) {

 System.out.println("Celsius 35 is Fahrenheit degree ");

 System.out.println((9 / 5) * 35 + 32);

 }

}

48

Supplements on the

Companion Website

See Supplement I.B for installing and

configuring JDK

See Supplement I.C for compiling and

running Java from the command window for

details

www.cs.armstrong.edu/liang/intro9e/supplement.html

