
1

Lecture 7: Abstract Classes and

Interfaces (Ch 15)

Adapted by Fangzhen Lin for COMP3021 from Y.

Danial Liang’s PowerPoints for Introduction to Java

Programming, Comprehensive Version, 9/E,

Pearson, 2013.

Objectives
 To design and use abstract classes (§15.2).

 To process a calendar using the Calendar and GregorianCalendar classes (§15.3).

 To specify behavior for objects using interfaces (§15.4).

 To define interfaces and declare classes that implement interfaces (§15.4).

 To define a natural order using the Comparable interface (§15.5).

 To enable objects to listen for action events using the ActionListener interface

(§15.6).

 To make objects cloneable using the Cloneable interface (§15.7).

 To explore the similarities and differences between an abstract class and an

interface (§15.8).

 *To create objects for primitive values using the wrapper classes (Byte, Short,

Integer, Long, Float, Double, Character, and Boolean) (§15.9).

 *To create a generic sort method (§15.10).

 *To simplify programming using automatic conversion between primitive types

and wrapper class types (§15.11).

 *To use the BigInteger and BigDecimal classes for computing very large numbers

with arbitrary precisions (§15.12). 2

3

Abstract Classes and Abstract Methods

GeometricObject

Circle

Rectangle

TestGometricObject

http://course.cs.ust.hk/comp3021/slides/html/GeometricObject.html
html/Circle9.html
http://course.cs.ust.hk/comp3021/slides/html/Circle.html
html/Rectangle.html
http://course.cs.ust.hk/comp3021/slides/html/Rectangle.html
http://course.cs.ust.hk/comp3021/slides/html/TestGeometricObject.html

What’s an abstract class?

 It is a special kind of class solely used for

sharing/reusing data/behavior for subclasses

Difference from the classes you have seen

so far

– Cannot be “newed”.

– Can own “abstract methods”.

Analogy:

– Special molds used to make other molds not to

make cakes
4

What’s an abstract method?

We need “abstract classes” for reusing

data/behavior for subclasses.

Often we only say what a method looks like

and don’t provide any definition

– No need  subclass will and must override

– Impossible  depends on what subclass does

Such methods are “abstract” methods with
the abstract modifier.

5

Interesting facts

 Only abstract class can have abstract methods,

regular class cannot.

 Abstract classes don’t have to have abstract

methods.

 Subclasses must provide definitions for all abstract

methods in parents unless themselves are abstract

 Subclass can be abstract and its parent can be

concrete.

 Subclass can override a concrete method as

abstract

6

The Abstract Calendar Class and Its

GregorianCalendar subclass

7

The Abstract Calendar Class and Its

GregorianCalendar subclass

 An instance of java.util.Date represents a specific instant

in time with millisecond precision.

 java.util.Calendar is an abstract base class for extracting

detailed information such as year, month, date, hour,

minute and second from a Date object.

 Subclasses of Calendar can implement specific calendar

systems such as Gregorian calendar, Lunar Calendar and

Jewish calendar.

 Currently, java.util.GregorianCalendar for the Gregorian

calendar is supported in the Java API.

8

The GregorianCalendar Class

You can use new GregorianCalendar() to construct

a default GregorianCalendar with the current time

and use new GregorianCalendar(year, month, date)

to construct a GregorianCalendar with the specified

year, month, and date. The month parameter is 0-

based, i.e., 0 is for January.

9

TestCalendar

http://course.cs.ust.hk/comp3021/slides/html/TestCalendar.html

Interfaces

What is an interface?

Why is an interface useful?

How do you define an interface?

How do you use an interface?

10

What’s an interface?

One of the most important concepts in the

Java language:

– To satisfy the need of multiple inheritance.

– Key for building massive scale Java libraries

Similar to abstract classes:

– Methods defined in a class can be used only by

objects of this class and its subclasses.

– Methods defined in an interface can be used by

objects belong to different classes.

11

Define an Interface
To distinguish an interface from a class, Java uses the

following syntax to declare an interface:

12

public interface InterfaceName {

 constant declarations;

 method signatures;

}

Example:

public interface Edible {

 /** Describe how to eat */

 public abstract String howToEat();

}

Conceptual Example

Chicken

– An animal, belong to the class of Bird.

– A type of poultry

– Our favorite dish in LG1/7

Multiple roles of Chicken class

– Latin name/Gene sequence/Origin

– Origin (farm)/stock number/Weight

– Price etc.

13

Code Example

14

abstract class Bird {};

interface Poultry {
 public int getStockNumber();
}

interface Dish {
 public void placeOrder();
}

class Chicken extends Bird implements Poultry, Dish{};

Chicken mychicken = new Chicken();

mychicken instanceof Bird ?

mychicken instanceof Dish;

mychicken instanceof Poultry;

Example

You can now use the Edible interface to specify whether

an object is edible. This is accomplished by letting the

class for the object implement this interface using the

implements keyword.

15

TestEdible Edible

http://course.cs.ust.hk/comp3021/slides/html/TestEdible.html
http://course.cs.ust.hk/comp3021/slides/html/Eatable.html

Omitting Modifiers in Interfaces

All data fields are public final static and all methods are public

abstract in an interface. For this reason, these modifiers can be

omitted, as shown below:

16

A constant defined in an interface can be accessed using syntax

InterfaceName.CONSTANT_NAME (e.g., T1.K).

Example: The Comparable Interface

// This interface is defined in

// java.lang package

package java.lang;

public interface Comparable {

 public int compareTo(Object o);

}

17

String and Date Classes

Many classes (e.g., String and Date) in the Java library
implement Comparable to define a natural order for the
objects. If you examine the source code of these classes,
you will see the keyword implements used in the classes,
as shown below:

18

public class String extends Object

 implements Comparable {

 // class body omitted

}

public class Date extends Object

 implements Comparable {

 // class body omitted

}

new String() instanceof String

new String() instanceof Comparable

new java.util.Date() instanceof java.util.Date

new java.util.Date() instanceof Comparable

Declaring Classes to Implement Comparable

You cannot use the max method to find the larger of two instances of Rectangle,
because Rectangle does not implement Comparable. However, you can declare a
new rectangle class that implements Comparable. The instances of this new class

are comparable. Let this new class be named ComparableRectangle.

19

ComparableRectangle

ComparableRectangle rectangle1 = new ComparableRectangle(4, 5);

ComparableRectangle rectangle2 = new ComparableRectangle(3, 6);

System.out.println(Max.max(rectangle1, rectangle2));

http://course.cs.ust.hk/comp3021/slides/html/CompareRectangle.html

The Cloneable Interfaces

package java.lang;

public interface Cloneable {

}

20

Marker Interface: An empty interface.

A marker interface does not contain constants or methods.

It is used to denote that a class possesses certain desirable

properties. A class that implements the Cloneable

interface is marked cloneable, and its objects can be

cloned using the clone() method defined in the Object

class.

Examples

Many classes (e.g., Date and Calendar) in the Java library implement

Cloneable. Thus, the instances of these classes can be cloned. For

example, the following code

Calendar calendar = new GregorianCalendar(2003, 2, 1);

Calendar calendarCopy = (Calendar)calendar.clone();

System.out.println("calendar == calendarCopy is " +

 (calendar == calendarCopy));

System.out.println("calendar.equals(calendarCopy) is " +

 calendar.equals(calendarCopy));

displays

calendar == calendarCopy is false

calendar.equals(calendarCopy) is true

21

Implementing Cloneable Interface

To declare a custom class that implements the Cloneable

interface, the class must override the clone() method in

the Object class. The following code declares a class

named House that implements Cloneable and

Comparable.

22

House

http://course.cs.ust.hk/comp3021/slides/html/House.html

Shallow vs. Deep Copy

23

House house1 = new House(1, 1750.50);

House house2 = (House)house1.clone();

Interfaces vs. Abstract Classes
In an interface, the data must be constants; an abstract class can
have all types of data.

Each method in an interface has only a signature without
implementation; an abstract class can have concrete methods.

24

Variables Constructors Methods

Abstract

class

No restrictions Constructors are invoked by subclasses

through constructor chaining. An abstract

class cannot be instantiated using the

new operator.

No restrictions.

Interface All variables

must be public

static final

No constructors. An interface cannot be

instantiated using the new operator.

All methods must be

public abstract

instance methods

Interfaces vs. Abstract Classes, cont.

Suppose that c is an instance of Class2. c is also an instance of Object, Class1,
Interface1, Interface1_1, Interface1_2, Interface2_1, and Interface2_2.

25

All classes share a single root, the Object class, but there is no single root for

interfaces. Like a class, an interface also defines a type. A variable of an interface

type can reference any instance of the class that implements the interface. If a class

extends an interface, this interface plays the same role as a superclass. You can use

an interface as a data type and cast a variable of an interface type to its subclass,

and vice versa.

Caution: conflict interfaces

In rare occasions, a class may implement two interfaces

with conflict information (e.g., two same constants with

different values or two methods with same signature but

different return type). This type of errors will be detected

by the compiler.

26

