
1

Lecture 5: Inheritance and

Polymorphism (Ch 11)

Adapted by Fangzhen Lin for COMP3021 from Y.

Danial Liang’s PowerPoints for Introduction to

Java Programming, Comprehensive Version, 9/E,

Pearson, 2013.

2

Motivations

Suppose you need to define classes to model

circles, rectangles, and triangles. These classes

have many common features. What is the best way

to design these classes so to avoid redundancy?

The answer is to use inheritance.

3

Objectives
 To define a subclass from a superclass through inheritance (§11.2).

 To invoke the superclass’s constructors and methods using the super keyword

(§11.3).

 To override instance methods in the subclass (§11.4).

 To distinguish differences between overriding and overloading (§11.5).

 To explore the toString() method in the Object class (§11.6).

 To discover polymorphism and dynamic binding (§§11.7–11.8).

 To describe casting and explain why explicit downcasting is necessary (§11.9).

 To explore the equals method in the Object class (§11.10).

 To store, retrieve, and manipulate objects in an ArrayList (§11.11).

 To implement a Stack class using ArrayList (§11.12).

 To enable data and methods in a superclass accessible from subclasses using the

protected visibility modifier (§11.13).

 To prevent class extending and method overriding using the final modifier

(§11.14).

discriminator: An attribute of enumeration type that indicates which property of a

 class is used to create a generalization relationship.

Generalization

An example of generalization

Modeling with UML

BankAccount

accountNumber

accountType

amount

serviceCharge

interestRate

balance()

deposit(amount)

withdraw(amount)

payInterest()

specifies the type of account

(values are: checking, savings)

applies only to checking accounts

applies only to savings accounts

applies only to savings accounts

discriminator

Generalization (cont'd)

Modeling with UML

superclass

subclass

BankAccount

accountNumber

amount

balance()

deposit(amount)

withdraw(amount)

Savings

interestRate

payInterest()

Checking

serviceCharge

specialization

Top-down

discriminator: An attribute of enumeration type that indicates which property of a

 class is used to create a generalization relationship.

generalization

relationship

Refactoring: Generalization

Modeling with UML

BankAccount

accountNumber

amount

balance()

deposit(amount)

withdraw(amount)

Savings

interestRate

payInterest()

Checking

serviceCharge

CreditCardAccount

accountNumber

amount

balance()

addCharge()

makePayment(amount)

chargeInterest()

Generalization (cont'd)
Can also be applied bottom-up

Modeling with UML

Savings

interestRate

payInterest()

Checking

serviceCharge

BankAccount

deposit()

withdraw(amount)

CreditCardAccount

addCharge()

makePayment(amount)

chargeInterest()

Account

accountNumber

amount

balance()

generalization

Bottom-up
superclass

subclass

subclass

superclass

Dual of generalization: Inheritance

• We place common attributes and operations in
a superclass and inherit them to the
subclass(es).

� Attributes and operations are only defined
in one place:

reduces redundancy of descriptions.

promotes reusability of descriptions.

simplifies modification of descriptions.

Modeling with UML

9

Superclasses and Subclasses

GeometricObject

TestCircleRectangle

GeometricObject

-color: String

-filled: boolean

-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,

filled: boolean)

+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled

values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,

filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

+printCircle(): void

Rectangle

-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double

color: String, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

+getArea(): double

+getPerimeter(): double

CircleFromSimpleGeometricObject

RectangleFromSimpleGeometricObject

http://course.cs.ust.hk/comp3021/slides/html/GeometricObject.html
http://course.cs.ust.hk/comp3021/slides/html/TestCircleRectangle.html
http://course.cs.ust.hk/comp3021/slides/html/CircleFromSimpleGeometricObject.html
http://course.cs.ust.hk/comp3021/slides/html/RectangleFromSimpleGeometricObject.html

10

Are superclass’s Constructor

Inherited?

No. They are not inherited.

They are invoked explicitly or implicitly.

Explicitly using the super keyword.

A constructor is used to construct an instance of a class.

Unlike properties and methods, a superclass's

constructors are not inherited in the subclass. They can

only be invoked from the subclasses' constructors, using

the keyword super. If the keyword super is not explicitly

used, the superclass's no-arg constructor is

automatically invoked.

11

Superclass’s Constructor Is Always Invoked

A constructor may invoke an overloaded constructor or its

superclass’s constructor. If none of them is invoked

explicitly, the compiler puts super() as the first statement

in the constructor. For example,

public A(double d) {

 // some statements

}

is equivalent to

public A(double d) {

 super();

 // some statements

}

public A() {

}

is equivalent to

public A() {

 super();

}

12

Using the Keyword super

 To call a superclass constructor

 To call a superclass method

The keyword super refers to the superclass

of the class in which super appears. This

keyword can be used in two ways:

13

CAUTION

You must use the keyword super to call the

superclass constructor. Invoking a

superclass constructor’s name in a subclass

causes a syntax error. Java requires that the

statement that uses the keyword super

appear first in the constructor.

14

Constructor Chaining

public class Faculty extends Employee {

 public static void main(String[] args) {

 new Faculty();

 }

 public Faculty() {

 System.out.println("(4) Faculty's no-arg constructor is invoked");

 }

}

class Employee extends Person {

 public Employee() {

 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's no-arg constructor is invoked");

 }

 public Employee(String s) {

 System.out.println(s);

 }

}

class Person {

 public Person() {

 System.out.println("(1) Person's no-arg constructor is invoked");

 }

}

Constructing an instance of a class invokes all the superclasses’ constructors

along the inheritance chain. This is called constructor chaining.

15

Trace Execution
public class Faculty extends Employee {

 public static void main(String[] args) {

 new Faculty();

 }

 public Faculty() {

 System.out.println("(4) Faculty's no-arg constructor is invoked");

 }

}

class Employee extends Person {

 public Employee() {

 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's no-arg constructor is invoked");

 }

 public Employee(String s) {

 System.out.println(s);

 }

}

class Person {

 public Person() {

 System.out.println("(1) Person's no-arg constructor is invoked");

 }

}

1. Start from the

main method

animation

16

Trace Execution
public class Faculty extends Employee {

 public static void main(String[] args) {

 new Faculty();

 }

 public Faculty() {

 System.out.println("(4) Faculty's no-arg constructor is invoked");

 }

}

class Employee extends Person {

 public Employee() {

 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's no-arg constructor is invoked");

 }

 public Employee(String s) {

 System.out.println(s);

 }

}

class Person {

 public Person() {

 System.out.println("(1) Person's no-arg constructor is invoked");

 }

}

2. Invoke Faculty

constructor

animation

17

Trace Execution
public class Faculty extends Employee {

 public static void main(String[] args) {

 new Faculty();

 }

 public Faculty() {

 System.out.println("(4) Faculty's no-arg constructor is invoked");

 }

}

class Employee extends Person {

 public Employee() {

 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's no-arg constructor is invoked");

 }

 public Employee(String s) {

 System.out.println(s);

 }

}

class Person {

 public Person() {

 System.out.println("(1) Person's no-arg constructor is invoked");

 }

}

3. Invoke Employee’s no-

arg constructor

animation

18

Trace Execution
public class Faculty extends Employee {

 public static void main(String[] args) {

 new Faculty();

 }

 public Faculty() {

 System.out.println("(4) Faculty's no-arg constructor is invoked");

 }

}

class Employee extends Person {

 public Employee() {

 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's no-arg constructor is invoked");

 }

 public Employee(String s) {

 System.out.println(s);

 }

}

class Person {

 public Person() {

 System.out.println("(1) Person's no-arg constructor is invoked");

 }

}

4. Invoke Employee(String)

constructor

animation

19

Trace Execution
public class Faculty extends Employee {

 public static void main(String[] args) {

 new Faculty();

 }

 public Faculty() {

 System.out.println("(4) Faculty's no-arg constructor is invoked");

 }

}

class Employee extends Person {

 public Employee() {

 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's no-arg constructor is invoked");

 }

 public Employee(String s) {

 System.out.println(s);

 }

}

class Person {

 public Person() {

 System.out.println("(1) Person's no-arg constructor is invoked");

 }

}

5. Invoke Person() constructor

animation

20

Trace Execution
public class Faculty extends Employee {

 public static void main(String[] args) {

 new Faculty();

 }

 public Faculty() {

 System.out.println("(4) Faculty's no-arg constructor is invoked");

 }

}

class Employee extends Person {

 public Employee() {

 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's no-arg constructor is invoked");

 }

 public Employee(String s) {

 System.out.println(s);

 }

}

class Person {

 public Person() {

 System.out.println("(1) Person's no-arg constructor is invoked");

 }

}

6. Execute println

animation

21

Trace Execution
public class Faculty extends Employee {

 public static void main(String[] args) {

 new Faculty();

 }

 public Faculty() {

 System.out.println("(4) Faculty's no-arg constructor is invoked");

 }

}

class Employee extends Person {

 public Employee() {

 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's no-arg constructor is invoked");

 }

 public Employee(String s) {

 System.out.println(s);

 }

}

class Person {

 public Person() {

 System.out.println("(1) Person's no-arg constructor is invoked");

 }

}

7. Execute println

animation

22

Trace Execution
public class Faculty extends Employee {

 public static void main(String[] args) {

 new Faculty();

 }

 public Faculty() {

 System.out.println("(4) Faculty's no-arg constructor is invoked");

 }

}

class Employee extends Person {

 public Employee() {

 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's no-arg constructor is invoked");

 }

 public Employee(String s) {

 System.out.println(s);

 }

}

class Person {

 public Person() {

 System.out.println("(1) Person's no-arg constructor is invoked");

 }

}

8. Execute println

animation

23

Trace Execution
public class Faculty extends Employee {

 public static void main(String[] args) {

 new Faculty();

 }

 public Faculty() {

 System.out.println("(4) Faculty's no-arg constructor is invoked");

 }

}

class Employee extends Person {

 public Employee() {

 this("(2) Invoke Employee’s overloaded constructor");
 System.out.println("(3) Employee's no-arg constructor is invoked");

 }

 public Employee(String s) {

 System.out.println(s);

 }

}

class Person {

 public Person() {

 System.out.println("(1) Person's no-arg constructor is invoked");

 }

}

9. Execute println

animation

24

Example on the Impact of a Superclass

without no-arg Constructor

public class Apple extends Fruit {

}

class Fruit {

 public Fruit(String name) {

 System.out.println("Fruit's constructor is invoked");

 }

}

Find out the errors in the program:

25

Defining a Subclass

A subclass inherits from a superclass. You can also:

 Add new properties

 Add new methods

 Override the methods of the superclass

26

Calling Superclass Methods

You could rewrite the printCircle() method in the Circle class as

follows:

public void printCircle() {

 System.out.println("The circle is created " +

 super.getDateCreated() + " and the radius is " + radius);

}

27

Overriding Methods in the Superclass

A subclass inherits methods from a superclass. Sometimes it is

necessary for the subclass to modify the implementation of a method

defined in the superclass. This is referred to as method overriding.

public class Circle extends GeometricObject {

 // Other methods are omitted

 /** Override the toString method defined in GeometricObject */

 public String toString() {

 return super.toString() + "\nradius is " + radius;

 }

}

28

NOTE

An instance method can be overridden only

if it is accessible. Thus a private method

cannot be overridden, because it is not

accessible outside its own class. If a method

defined in a subclass is private in its

superclass, the two methods are completely

unrelated.

29

NOTE

Like an instance method, a static method

can be inherited. However, a static method

cannot be overridden. If a static method

defined in the superclass is redefined in a

subclass, the method defined in the

superclass is hidden.

30

Overriding vs. Overloading
 public class Test {

 public static void main(String[] args) {

 A a = new A();

 a.p(10);

 a.p(10.0);

 }

}

class B {

 public void p(double i) {

 System.out.println(i * 2);

 }

}

class A extends B {

 // This method overrides the method in B

 public void p(double i) {

 System.out.println(i);

 }

}

public class Test {

 public static void main(String[] args) {

 A a = new A();

 a.p(10);

 a.p(10.0);

 }

}

class B {

 public void p(double i) {

 System.out.println(i * 2);

 }

}

class A extends B {

 // This method overloads the method in B

 public void p(int i) {

 System.out.println(i);

 }

}

31

The Object Class and Its Methods

Every class in Java is descended from the

java.lang.Object class. If no inheritance is

specified when a class is defined, the

superclass of the class is Object.

 public class Circle {
 ...

}

Equivalent
public class Circle extends Object {

 ...

}

32

The toString() method in Object

The toString() method returns a string representation of the
object. The default implementation returns a string consisting
of a class name of which the object is an instance, the at sign
(@), and a number representing this object.

Loan loan = new Loan();

System.out.println(loan.toString());

The code displays something like Loan@15037e5 . This

message is not very helpful or informative. Usually you should
override the toString method so that it returns a digestible string
representation of the object.

33

Polymorphism, Dynamic Binding and Generic Programming

public class PolymorphismDemo {

 public static void main(String[] args) {

 m(new GraduateStudent());

 m(new Student());

 m(new Person());

 m(new Object());

 }

 public static void m(Object x) {

 System.out.println(x.toString());

 }

}

class GraduateStudent extends Student {

}

class Student extends Person {

 public String toString() {

 return "Student";

 }

}

class Person extends Object {

 public String toString() {

 return "Person";

 }

}

Method m takes a parameter

of the Object type. You can

invoke it with any object.

An object of a subtype can be used wherever its

supertype value is required. This feature is

known as polymorphism.

When the method m(Object x) is executed, the
argument x’s toString method is invoked. x
may be an instance of GraduateStudent,
Student, Person, or Object. Classes
GraduateStudent, Student, Person, and Object
have their own implementation of the toString
method. Which implementation is used will be
determined dynamically by the Java Virtual
Machine at runtime. This capability is known
as dynamic binding.

34

Dynamic Binding

Dynamic binding works as follows: Suppose an object o is an
instance of classes C1, C2, ..., Cn-1, and Cn, where C1 is a subclass
of C2, C2 is a subclass of C3, ..., and Cn-1 is a subclass of Cn. That
is, Cn is the most general class, and C1 is the most specific class.
In Java, Cn is the Object class. If o invokes a method p, the JVM
searches the implementation for the method p in C1, C2, ..., Cn-1

and Cn, in this order, until it is found. Once an implementation is
found, the search stops and the first-found implementation is
invoked.

Cn Cn-1 C2 C1

Object

Since o is an instance of C1, o is also an

instance of C2, C3, …, Cn-1, and Cn

35

Method Matching vs. Binding

Matching a method signature and binding a method
implementation are two issues. The compiler finds a
matching method according to parameter type, number
of parameters, and order of the parameters at
compilation time. A method may be implemented in
several subclasses. The Java Virtual Machine
dynamically binds the implementation of the method at
runtime.

36

Generic Programming

public class PolymorphismDemo {

 public static void main(String[] args) {

 m(new GraduateStudent());

 m(new Student());

 m(new Person());

 m(new Object());

 }

 public static void m(Object x) {

 System.out.println(x.toString());

 }

}

class GraduateStudent extends Student {

}

class Student extends Person {

 public String toString() {

 return "Student";

 }

}

class Person extends Object {

 public String toString() {

 return "Person";

 }

}

Polymorphism allows methods to be used
generically for a wide range of object
arguments. This is known as generic
programming. If a method’s parameter
type is a superclass (e.g., Object), you
may pass an object to this method of any
of the parameter’s subclasses (e.g.,
Student or String). When an object (e.g., a
Student object or a String object) is used
in the method, the particular
implementation of the method of the
object that is invoked (e.g., toString) is
determined dynamically.

37

Casting Objects
You have already used the casting operator to convert variables of

one primitive type to another. Casting can also be used to convert an

object of one class type to another within an inheritance hierarchy. In

the preceding section, the statement

m(new Student());

assigns the object new Student() to a parameter of the Object type.

This statement is equivalent to:

Object o = new Student(); // Implicit casting

m(o);

The statement Object o = new Student(), known as

implicit casting, is legal because an instance of

Student is automatically an instance of Object.

38

Why Casting Is Necessary?
Suppose you want to assign the object reference o to a variable of the
Student type using the following statement:

Student b = o;

A compile error would occur. Why does the statement Object o =
new Student() work and the statement Student b = o doesn’t? This
is because a Student object is always an instance of Object, but an
Object is not necessarily an instance of Student. Even though you can
see that o is really a Student object, the compiler is not so clever to
know it. To tell the compiler that o is a Student object, use an explicit
casting. The syntax is similar to the one used for casting among
primitive data types. Enclose the target object type in parentheses and
place it before the object to be cast, as follows:

Student b = (Student)o; // Explicit casting

39

Casting from

Superclass to Subclass

Explicit casting must be used when casting an

object from a superclass to a subclass. This type

of casting may not always succeed.

Apple x = (Apple)fruit;

Orange x = (Orange)fruit;

40

The instanceof Operator

Use the instanceof operator to test whether an object is an instance
of a class:

Object myObject = new Circle();

... // Some lines of code

/** Perform casting if myObject is an instance of
Circle */

if (myObject instanceof Circle) {

 System.out.println("The circle diameter is " +

 ((Circle)myObject).getDiameter());

 ...

}

41

TIP

To help understand casting, you may also
consider the analogy of fruit, apple, and
orange with the Fruit class as the superclass
for Apple and Orange. An apple is a fruit, so
you can always safely assign an instance of
Apple to a variable for Fruit. However, a
fruit is not necessarily an apple, so you have
to use explicit casting to assign an instance
of Fruit to a variable of Apple.

42

Example: Demonstrating

Polymorphism and Casting

This example creates two geometric objects: a

circle, and a rectangle, invokes the

displayGeometricObject method to display the

objects. The displayGeometricObject displays

the area and diameter if the object is a circle, and

displays area if the object is a rectangle.

CastingDemo

http://course.cse.ust.hk/comp3021/slides/html/CastingDemo.html

43

The equals Method

The equals() method compares the

contents of two objects. The default implementation of the

equals method in the Object class is as follows:

public boolean equals(Object obj) {

 return (this == obj);
}

For example, the

equals method is

overridden in

the Circle

class.

public boolean equals(Object o) {

 if (o instanceof Circle) {

 return radius == ((Circle)o).radius;

 }

 else

 return false;

}

44

NOTE
The == comparison operator is used for

comparing two primitive data type values or for

determining whether two objects have the same

references. The equals method is intended to

test whether two objects have the same

contents, provided that the method is modified

in the defining class of the objects. The ==

operator is stronger than the equals method, in

that the == operator checks whether the two

reference variables refer to the same object.

45

The ArrayList Class
You can create an array to store objects. But the array’s size is fixed
once the array is created. Java provides the ArrayList class that can
be used to store an unlimited number of objects.

 java.util.ArrayList<E>

+ArrayList()

+add(o: E) : void

+add(index: int, o: E) : void

+clear(): void

+contains(o: Object): boolean

+get(index: int) : E

+indexOf(o: Object) : int

+isEmpty(): boolean

+lastIndexOf(o: Object) : int

+remove(o: Object): boolean

+size(): int

+remove(index: int) : boolean

+set(index: int, o: E) : E

Creates an empty list.

Appends a new element o at the end of this list.

Adds a new element o at the specified index in this list.

Removes all the elements from this list.

Returns true if this list contains the element o.

Returns the element from this list at the specified index.

Returns the index of the first matching element in this list.

Returns true if this list contains no elements.

Returns the index of the last matching element in this list.

Removes the element o from this list.

Returns the number of elements in this list.

Removes the element at the specified index.

Sets the element at the specified index.

46

Generic Type

ArrayList is known as a generic class with a generic

type E. You can specify a concrete type to replace E

when creating an ArrayList. For example, the

following statement creates an ArrayList and assigns

its reference to variable cities. This ArrayList object

can be used to store strings.

ArrayList<String> cities = new ArrayList<String>();

47

Differences and Similarities between

Arrays and ArrayList

Operation Array ArrayList

Creating an array/ArrayList String[] a = new String[10] ArrayList<String> list = new ArrayList<>();

Accessing an element a[index] list.get(index);

Updating an element a[index] = "London"; list.set(index, "London");

Returning size a.length list.size();

Adding a new element list.add("London");

Inserting a new element list.add(index, "London");

Removing an element list.remove(index);

Removing an element list.remove(Object);

Removing all elements list.clear();

48

Case Study: A Custom Stack Class

MyStack

 MyStack
-list: ArrayList

+isEmpty(): boolean

+getSize(): int

+peek(): Object

+pop(): Object

+push(o: Object): void

+search(o: Object): int

Returns true if this stack is empty.

Returns the number of elements in this stack.

Returns the top element in this stack.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

Returns the position of the first element in the stack from

the top that matches the specified element.

A list to store elements.

http://course.cs.ust.hk/comp3021/slides/html/MyStack.html

49

The protected Modifier

 The protected modifier can be applied on data
and methods in a class. A protected data or a
protected method in a public class can be accessed
by any class in the same package or its subclasses,
even if the subclasses are in a different package.

private, default, protected, public

private, none (if no modifier is used), protected, public

Visibility increases

50

Accessibility Summary

Modifier

on members

in a class

Accessed

from the

same class

Accessed

from the

same package

Accessed

from a

subclass

Accessed

from a different

package

public

protected -

default - -

private - - -

51

Visibility Modifiers

public class C1 {

 public int x;

 protected int y;

 int z;

 private int u;

 protected void m() {

 }

}

public class C2 {

 C1 o = new C1();

 can access o.x;

 can access o.y;

 can access o.z;

 cannot access o.u;

 can invoke o.m();

}

public class C3

 extends C1 {

 can access x;

 can access y;

 can access z;

 cannot access u;

 can invoke m();

}

package p1;

public class C4

 extends C1 {

 can access x;

 can access y;

 cannot access z;

 cannot access u;

 can invoke m();

}

package p2;

public class C5 {

 C1 o = new C1();

 can access o.x;

 cannot access o.y;

 cannot access o.z;

 cannot access o.u;

 cannot invoke o.m();

}

52

A Subclass Cannot Weaken the Accessibility

A subclass may override a protected

method in its superclass and change its

visibility to public. However, a subclass

cannot weaken the accessibility of a

method defined in the superclass. For

example, if a method is defined as public

in the superclass, it must be defined as

public in the subclass.

53

NOTE

The modifiers are used on classes and

class members (data and methods), except

that the final modifier can also be used on

local variables in a method. A final local

variable is a constant inside a method.

54

The final Modifier

 The final class cannot be extended:

 final class Math {

 ...

 }

 The final variable is a constant:

 final static double PI = 3.14159;

 The final method cannot be
overridden by its subclasses.

