
1

Lecture 6: GUI Basics (Ch 12)

Adapted by Fangzhen Lin for COMP3021 from Y.

Danial Liang’s PowerPoints for Introduction to

Java Programming, Comprehensive Version, 9/E,

Pearson, 2013.

2

Motivations

The design of the API for Java GUI programming

is an excellent example of how the object-oriented

principle is applied. Java GUI API and components

are used to develop user-friendly interfaces for

applications and applets.

3

Objectives
 To distinguish between Swing and AWT (§12.2).

 To describe the Java GUI API hierarchy (§12.3).

 To create user interfaces using frames, panels, and simple GUI components (§12.4).

 To understand the role of layout managers and use the FlowLayout, GridLayout, and

BorderLayout managers to lay out components in a container (§12.5).

 To use JPanel to group components in a subcontainer (§12.6).

 To create objects for colors using the Color class (§12.7).

 To create objects for fonts using the Font class (§12.8).

 To apply common features such as borders, tool tips, fonts, and colors on Swing

components (§12.9).

 To decorate the border of GUI components (§12.9).

 To create image icons using the ImageIcon class (§12.10).

 To create and use buttons using the JButton class (§12.11).

 To create and use check boxes using the JCheckBox class (§12.12).

 To create and use radio buttons using the JRadioButton class (§12.13).

 To create and use labels using the JLabel class (§12.14).

 To create and use text fields using the JTextField class (§12.15).

4

Creating GUI Objects
// Create a button with text OK

JButton jbtOK = new JButton("OK");

// Create a label with text "Enter your name: "

JLabel jlblName = new JLabel("Enter your name: ");

// Create a text field with text "Type Name Here"

JTextField jtfName = new JTextField("Type Name Here");

// Create a check box with text bold

JCheckBox jchkBold = new JCheckBox("Bold");

// Create a radio button with text red

JRadioButton jrbRed = new JRadioButton("Red");

// Create a combo box with choices red, green, and blue

JComboBox jcboColor = new JComboBox(new String[]{"Red",

 "Green", "Blue"});

Button

Label Text

field

Check

Box

Radio

Button

Combo

Box

5

Swing vs. AWT
So why do the GUI component classes have a prefix J? Instead of JButton, why
not name it simply Button? In fact, there is a class already named Button in the
java.awt package.

When Java was introduced, the GUI classes were bundled in a library known as
the Abstract Windows Toolkit (AWT). For every platform on which Java runs, the
AWT components are automatically mapped to the platform-specific components
through their respective agents, known as peers. AWT is fine for developing
simple graphical user interfaces, but not for developing comprehensive GUI
projects. Besides, AWT is prone to platform-specific bugs because its peer-based
approach relies heavily on the underlying platform. With the release of Java 2, the
AWT user-interface components were replaced by a more robust, versatile, and
flexible library known as Swing components. Swing components are painted
directly on canvases using Java code, except for components that are subclasses of
java.awt.Window or java.awt.Panel, which must be drawn using native GUI on a
specific platform. Swing components are less dependent on the target platform and
use less of the native GUI resource. For this reason, Swing components that don’t
rely on native GUI are referred to as lightweight components, and AWT
components are referred to as heavyweight components.

The Java GUI API

The GUI API contains classes that can be

classified into three groups:

Component classes for creating user

interface.

Container classes for grouping components.

Helper classes for supporting component

classes

6

7

GUI Class Hierarchy (Swing)

Dimension

Font

FontMetrics

Component

Graphics

Object Color

Container

Panel Applet

Frame

Dialog

Window

JComponent

JApplet

JFrame

JDialog

Swing Components

in the javax.swing package

Lightweight

Heavyweight

Classes in the java.awt

package

1

LayoutManager

*

8

Container Classes

Dimension

Font

FontMetrics

Component

Graphics

Object Color

Container

Panel Applet

Frame

Dialog

Window

JComponent

JApplet

JFrame

JDialog

Swing Components

in the javax.swing package

Lightweight

Heavyweight

Classes in the java.awt

package

1

LayoutManager

*

JPanel
Container classes can

contain other GUI

components.

9

Dimension

Font

FontMetrics

Component

Graphics

Object Color

Container

Panel Applet

Frame

Dialog

Window

JComponent

JApplet

JFrame

JDialog

Swing Components

in the javax.swing package

Lightweight

Heavyweight

Classes in the java.awt

package

1

LayoutManager

*

JPanel
The helper classes are not subclasses

of Component. They are used to

describe the properties of GUI

components such as graphics context,

colors, fonts, and dimension.

GUI Helper Classes

10

Swing GUI Components

 JMenuItem

 JCheckBoxMenuItem

AbstractButton

JComponent

 JMenu

 JRadioButtonMenuItem

 JToggleButton JCheckBox

 JRadioButton

 JComboBox

 JInternalFrame

 JLayeredPane

 JList

 JMenuBar

 JOptionPane

 JPopupMenu

 JProgressBar

 JFileChooser

 JScrollBar

 JScrollPane JSeparator JSplitPane

 JSlider

 JTabbedPane

 JTable JTableHeader

 JTextField JTextComponent

 JTextArea

 JToolBar JToolTip

 JTree

 JRootPane

 JPanel

 JPasswordField

 JColorChooser

 JLabel

 JEditorPane

 JSpinner

 JButton

11

AWT (Optional)

AWTEvent

Font

FontMetrics

Component

Graphics

Object Color

Canvas

Button

TextComponent

Label

List

CheckBoxGroup

CheckBox

Choice

Container Panel Applet

Frame

Dialog FileDialog

Window

TextField

TextArea

MenuComponent MenuItem

MenuBar

Menu

Scrollbar

LayoutManager

12

Frames

Frame is a window that is not contained inside

another window. Frame is the basis to contain

other user interface components in Java GUI

applications.

The JFrame class can be used to create

windows.

For Swing GUI programs, use JFrame class to

create widows.

13

Creating Frames
import javax.swing.*;

public class MyFrame {

 public static void main(String[] args) {

 JFrame frame = new JFrame("Test Frame");

 frame.setSize(400, 300);

 frame.setVisible(true);

 frame.setDefaultCloseOperation(

 JFrame.EXIT_ON_CLOSE);

 }

 }

MyFrame

http://course.cs.ust.hk/comp3021/slides/html/MyFrame.html

14

Adding Components into a Frame

// Add a button into the frame

frame.add(

 new JButton("OK"));

MyFrameWithComponents

Title bar

Content pane

http://course.cs.ust.hk/comp3021/slides/html/MyFrameWithComponents.html

15

Content Pane Delegation in JDK 1.5

// Add a button into the frame

frame.getContentPane().add(

 new JButton("OK"));
Title bar

Content pane
// Add a button into the frame

frame.add(

 new JButton("OK"));

16

JFrame Class
 javax.swing.JFrame

+JFrame()

+JFrame(title: String)

+setSize(width: int, height: int): void

+setLocation(x: int, y: int): void

+setVisible(visible: boolean): void

+setDefaultCloseOperation(mode: int): void

+setLocationRelativeTo(c: Component):
void

+pack(): void

Creates a default frame with no title.

Creates a frame with the specified title.

Specifies the size of the frame.

Specifies the upper-left corner location of the frame.

Sets true to display the frame.

Specifies the operation when the frame is closed.

Sets the location of the frame relative to the specified component.

If the component is null, the frame is centered on the screen.

Automatically sets the frame size to hold the components in the

frame.

17

Layout Managers

 Java’s layout managers provide a level of abstraction to

automatically map your user interface on all window

systems.

 The UI components are placed in containers. Each

container has a layout manager to arrange the UI

components within the container.

 Layout managers are set in containers using the

setLayout(LayoutManager) method in a container.

18

Kinds of Layout Managers

 FlowLayout (this chapter)

 GridLayout (this chapter)

 BorderLayout (this chapter)

 Several other layout managers will be introduced

in bonus Chapter 37, “Containers, Layout

Managers, and Borders”

19

FlowLayout Example

Write a program that

adds three labels and

text fields into the

content pane of a

frame with a

FlowLayout manager.

ShowFlowLayout

http://course.cs.ust.hk/comp3021/slides/html/ShowFlowLayout.html

20

The FlowLayout Class

java.awt.FlowLayout

-alignment: int

-hgap: int

-vgap: int

+FlowLayout()

+FlowLayout(alignment: int)

+FlowLayout(alignment: int,

hgap: int, vgap: int)

The alignment of this layout manager (default: CENTER).

The horizontal gap between the components (default: 5 pixels).

The vertical gap between the components (default: 5 pixels).

Creates a default FlowLayout manager.

Creates a FlowLayout manager with a specified alignment.

Creates a FlowLayout manager with a specified alignment,

horizontal gap, and vertical gap.

The get and set methods for these data fields are provided in

the class, but omitted in the UML diagram for brevity.

21

GridLayout Example

Rewrite the program in
the preceding example
using a GridLayout
manager instead of a
FlowLayout manager to
display the labels and
text fields.

ShowGridLayout

http://course.cs.ust.hk/comp3021/slides/html/ShowGridLayout.html

22

The GridLayout Class

java.awt.GridLayout

-rows: int

-columns: int

-hgap: int

-vgap: int

+GridLayout()

+GridLayout(rows: int, columns: int)

+GridLayout(rows: int, columns: int,

hgap: int, vgap: int)

The number of rows in the grid (default: 1).

The number of columns in the grid (default: 1).

The horizontal gap between the components (default: 0).

The vertical gap between the components (default: 0).

Creates a default GridLayout manager.

Creates a GridLayout with a specified number of rows and columns.

Creates a GridLayout manager with a specified number of rows and

columns, horizontal gap, and vertical gap.

The get and set methods for these data fields are provided in the

class, but omitted in the UML diagram for brevity.

23

The BorderLayout Manager

The BorderLayout

manager divides the

container into five areas:

East, South, West, North,

and Center. Components are

added to a BorderLayout

by using the add method.

add(Component,

constraint), where

constraint is

BorderLayout.EAST,

BorderLayout.SOUTH,

BorderLayout.WEST,

BorderLayout.NORTH, or

BorderLayout.CENTER.

24

BorderLayout Example

ShowBorderLayout

http://course.cs.ust.hk/comp3021/slides/html/ShowBorderLayout.html

25

The BorderLayout Class

java.awt.BorderLayout

-hgap: int

-vgap: int

+BorderLayout()

+BorderLayout(hgap: int, vgap: int)

The horizontal gap between the components (default: 0).

The vertical gap between the components (default: 0).

Creates a default BorderLayout manager.

Creates a BorderLayout manager with a specified number for

horizontal gap and vertical gap.

The get and set methods for these data fields are provided in

the class, but omitted in the UML diagram for brevity.

26

The Color Class

You can set colors for GUI components by using the
java.awt.Color class. Colors are made of red, green, and
blue components, each of which is represented by a byte
value that describes its intensity, ranging from 0 (darkest
shade) to 255 (lightest shade). This is known as the RGB
model.

Color c = new Color(r, g, b);

r, g, and b specify a color by its red, green, and blue
components.

Example:
Color c = new Color(228, 100, 255);

27

Standard Colors

Thirteen standard colors (black, blue, cyan, darkGray,
gray, green, lightGray, magenta, orange, pink, red, white,
yellow) are defined as constants in java.awt.Color.

The standard color names are constants, but they are
named as variables with lowercase for the first word and
uppercase for the first letters of subsequent words. Thus
the color names violate the Java naming convention.
Since JDK 1.4, you can also use the new constants:
BLACK, BLUE, CYAN, DARK_GRAY, GRAY,
GREEN, LIGHT_GRAY, MAGENTA, ORANGE,
PINK, RED, WHITE, and YELLOW.

28

Setting Colors

You can use the following methods to set the

component’s background and foreground colors:

setBackground(Color c)

setForeground(Color c)

Example:

jbt.setBackground(Color.yellow);

jbt.setForeground(Color.red);

29

The Font Class

Font myFont = new Font(name, style, size);

Example:
Font myFont = new Font("SansSerif ", Font.BOLD, 16);

Font myFont = new Font("Serif", Font.BOLD+Font.ITALIC, 12);

JButton jbtOK = new JButton("OK“);
jbtOK.setFont(myFont);

Font Names

Standard font names
that are supported in
all platforms are:
SansSerif, Serif,
Monospaced, Dialog,
or DialogInput.

Font Style

Font.PLAIN (0),
Font.BOLD (1),
Font.ITALIC (2), and
Font.BOLD +
Font.ITALIC (3)

30

Finding All Available Font

Names

GraphicsEnvironment e =

 GraphicsEnvironment.getLocalGraphicsEnvironment();

String[] fontnames =

e.getAvailableFontFamilyNames();

for (int i = 0; i < fontnames.length; i++)

 System.out.println(fontnames[i]);

31

Using Panels as Sub-Containers

 Panels act as sub-containers for grouping user interface

components.

 It is recommended that you place the user interface

components in panels and place the panels in a frame.

You can also place panels in a panel.

 To add a component to JFrame, you actually add it to

the content pane of JFrame. To add a component to a

panel, you add it directly to the panel using the add

method.

32

Creating a JPanel

You can use new JPanel() to create a panel with a default

FlowLayout manager or new JPanel(LayoutManager) to

create a panel with the specified layout manager. Use the

add(Component) method to add a component to the

panel. For example,

JPanel p = new JPanel();

p.add(new JButton("OK"));

33

Testing Panels Example

This example uses panels to organize components.

The program creates a user interface for a
Microwave oven.

TestPanels

A button

A textfield

12

buttons

frame

p2

p1

http://course.cs.ust.hk/comp3021/slides/html/TestPanels.html

34

Common Features of Swing Components

java.awt.Container

+add(comp: Component): Component

+add(comp: Component, index: int): Component

+remove(comp: Component): void

+getLayout(): LayoutManager

+setLayout(l: LayoutManager): void

Adds a component to the container.

Adds a component to the container with the specified index.

Removes the component from the container.

Returns the layout manager for this container.

Sets the layout manager for this container.

java.awt.Component

-font: java.awt.Font

-background: java.awt.Color

-foreground: java.awt.Color

-preferredSize: java.awt.Dimension

-visible: boolean

-cursor: java.awt.Cursor

+getWidth(): int

+getHeight(): int

+getX(): int

+getY(): int

The font of this component.

The background color of this component.

The foreground color of this component.

The preferred size of this component.

Indicates whether this component is visible.

The mouse cursor shape.

Returns the width of this component.

Returns the height of this component.

getX() and getY() return the coordinate of the component’s

upper-left corner within its parent component.

javax.swing.JComponent

-toolTipText: String

-border: javax.swing.border.Border

The tool tip text for this component. Tool tip text is displayed when the mouse

points on the component without clicking.

The border for this component.

The get and set methods for these data fields are provided in

the class, but omitted in the UML diagram for brevity.

The get and set methods for these data fields are provided in

the class, but omitted in the UML diagram for brevity.

35

Borders
You can set a border on any object of the
JComponent class. Swing has several types of
borders. To create a titled border, use

new TitledBorder(String title).

To create a line border, use

new LineBorder(Color color, int width),

where width specifies the thickness of the line.
For example, the following code displays a titled
border on a panel:

JPanel panel = new JPanel();

panel.setBorder(new TitleBorder(“My Panel”));

36

Test Swing Common Features

Component Properties

 font

 background

 foreground

 preferredSize

 minimumSize

 maximumSize

JComponent Properties

toolTipText

border

TestSwingCommonFeatures

http://course.cs.ust.hk/comp3021/slides/html/TestSwingComponentsFeatures.html

37

Image Icons

Java uses the javax.swing.ImageIcon class to represent

an icon. An icon is a fixed-size picture; typically it is

small and used to decorate components. Images are

normally stored in image files. You can use new

ImageIcon(filename) to construct an image icon. For

example, the following statement creates an icon from an

image file us.gif in the image directory under the current

class path:

 ImageIcon icon = new ImageIcon("image/us.gif");

TestImageIcon

http://course.cs.ust.hk/comp3021/slides/html/TestImageIcon.html

38

Splash Screen

A splash screen is an image that is displayed while the

application is starting up. If your program takes a long

time to load, you may display a splash screen to alert the

user. For example, the following command:

java –splash:image/us.gif TestImageIcon

displays an image while the program TestImageIcon is

being loaded.

39

Buttons

A button is a component that triggers an action event

when clicked. Swing provides regular buttons,

toggle buttons, check box buttons, and radio buttons.

The common features of these buttons are

generalized in javax.swing.AbstractButton.

40

javax.swing.AbstractButton

-actionCommand: String

-text: String

-icon: javax.swing.Icon

-pressedIcon: javax.swing.Icon

-rolloverIcon: javax.swing.Icon

-mnemonic: int

-horizontalAlignment: int

-horizontalTextPosition: int

-verticalAlignment: int

-verticalTextPosition: int

-borderPainted: boolean

-iconTextGap: int

-selected(): boolean

The action command of this button.

The button’s text (i.e., the text label on the button).

The button’s default icon. This icon is also used as the "pressed" and
"disabled" icon if there is no explicitly set pressed icon.

The pressed icon (displayed when the button is pressed).

The rollover icon (displayed when the mouse is over the button).

The mnemonic key value of this button. You can select the button by

pressing the ALT key and the mnemonic key at the same time.

The horizontal alignment of the icon and text (default: CENTER).

The horizontal text position relative to the icon (default: RIGHT).

The vertical alignment of the icon and text (default: CENTER).

The vertical text position relative to the icon (default: CENTER).

Indicates whether the border of the button is painted. By default, a regular

button’s border is painted, but the borders for a check box and a radio

button is not painted.

The gap between the text and the icon on the button (JDK 1.4).

The state of the button. True if the check box or radio button is selected,

false if it's not.

javax.swing.JComponent

The get and set methods for these data fields are provided in
the class, but omitted in the UML diagram for brevity.

AbstractButton

41

JButton

JButton inherits AbstractButton and provides several
constructors to create buttons.

javax.swing.JButton

+JButton()

+JButton(icon: javax.swing.Icon)

+JButton(text: String)

+JButton(text: String, icon: Icon)

Creates a default button with no text and icon.

Creates a button with an icon.

Creates a button with text.

Creates a button with text and an icon.

javax.swing.AbstractButton

42

JButton Constructors

The following are JButton constructors:

JButton()

JButton(String text)

JButton(String text, Icon icon)

JButton(Icon icon)

43

JButton Properties

text

icon

mnemonic

horizontalAlignment

verticalAlignment

horizontalTextPosition

verticalTextPosition

iconTextGap

44

Default Icons, Pressed Icon, and

Rollover Icon
A regular button has a default icon, pressed icon,
and rollover icon. Normally, you use the default
icon. All other icons are for special effects. A
pressed icon is displayed when a button is pressed
and a rollover icon is displayed when the mouse
is over the button but not pressed.

(A) Default icon (B) Pressed icon (C) Rollover icon

45

Demo

TestButtonIcons

http://course.cs.ust.hk/comp3021/slides/html/TestButtonIcons.html
http://course.cs.ust.hk/comp3021/slides/html/TestButtonIcons.html

46

Horizontal Alignments
Horizontal alignment specifies how the icon and
text are placed horizontally on a button. You can set
the horizontal alignment using one of the five
constants: LEADING, LEFT, CENTER, RIGHT,
TRAILING. At present, LEADING and LEFT are
the same and TRAILING and RIGHT are the same.
Future implementation may distinguish them. The
default horizontal alignment is
SwingConstants.TRAILING.

47

Vertical Alignments

Vertical alignment specifies how the icon and
text are placed vertically on a button. You can
set the vertical alignment using one of the
three constants: TOP, CENTER, BOTTOM.
The default vertical alignment is
SwingConstants.CENTER.

48

Horizontal Text Positions

Horizontal text position specifies the
horizontal position of the text relative to the
icon. You can set the horizontal text position
using one of the five constants: LEADING,
LEFT, CENTER, RIGHT, TRAILING. The
default horizontal text position is
SwingConstants.RIGHT.

49

Vertical Text Positions

Vertical text position specifies the vertical
position of the text relative to the icon. You
can set the vertical text position using one of
the three constants: TOP, CENTER. The
default vertical text position is
SwingConstants.CENTER.

50

JCheckBox
JCheckBox inherits all the properties such as text, icon,
mnemonic, verticalAlignment, horizontalAlignment,
horizontalTextPosition, verticalTextPosition, and selected
from AbstractButton, and provides several constructors to
create check boxes.

javax.swing.JCheckBox

+JCheckBox()

+JCheckBox(text: String)

+JCheckBox(text: String, selected:
boolean)

+JCheckBox(icon: Icon)

+JCheckBox(text: String, icon: Icon)

+JCheckBox(text: String, icon: Icon,

selected: boolean)

Creates a default check box button with no text and icon.

Creates a check box with text.

Creates a check box with text and specifies whether the check box is

initially selected.

Creates a checkbox with an icon.

Creates a checkbox with text and an icon.

Creates a check box with text and an icon, and specifies whether the check

box is initially selected.

javax.swing.AbstractButton

javax.swing.JToggleButton

51

JRadioButton
Radio buttons are variations of check boxes. They are
often used in the group, where only one button is
checked at a time.

javax.swing.JRadioButton

+JRadioButton()

+JRadioButton(text: String)

+JRadioButton(text: String, selected:
boolean)

+JRadioButton(icon: Icon)

+JRadioButton(text: String, icon: Icon)

+JRadioButton(text: String, icon: Icon,

selected: boolean)

Creates a default radio button with no text and icon.

Creates a radio button with text.

Creates a radio button with text and specifies whether the radio button is

initially selected.

Creates a radio button with an icon.

Creates a radio button with text and an icon.

Creates a radio button with text and an icon, and specifies whether the radio

button is initially selected.

javax.swing.AbstractButton

javax.swing.JToggleButton

52

Grouping Radio Buttons

ButtonGroup btg = new ButtonGroup();

btg.add(jrb1);

btg.add(jrb2);

53

JLabel

A label is a display area for a short text, an image, or both.

javax.swing.JLabel

-text: String

-icon: javax.swing.Icon

-horizontalAlignment: int

-horizontalTextPosition: int

-verticalAlignment: int

-verticalTextPosition: int

-iconTextGap: int

+JLabel()

+JLabel(icon: javax.swing.Icon)

+JLabel(icon: Icon, hAlignment: int)

+JLabel(text: String)

+JLabel(text: String, icon: Icon,

hAlignment: int)

+JLabel(text: String, hAlignment: int)

The label’s text.

The label’s image icon.

The horizontal alignment of the text and icon on the label.

The horizontal text position relative to the icon on the label.

The vertical alignment of the text and icon on the label.

The vertical text position relative to the icon on the label.

The gap between the text and the icon on the label (JDK 1.4).

Creates a default label with no text and icon.

Creates a label with an icon.

Creates a label with an icon and the specified horizontal alignment.

Creates a label with text.

Creates a label with text, an icon, and the specified horizontal alignment.

Creates a label with text and the specified horizontal alignment.

javax.swing.JComponent

The get and set methods for these data fields are provided in
the class, but omitted in the UML diagram for brevity.

54

JLabel Constructors

The constructors for labels are as follows:

JLabel()

JLabel(String text, int horizontalAlignment)

JLabel(String text)

JLabel(Icon icon)

JLabel(Icon icon, int horizontalAlignment)

JLabel(String text, Icon icon, int

horizontalAlignment)

55

JLabel Properties

JLabel inherits all the properties from
JComponent and has many properties
similar to the ones in JButton, such as
text, icon, horizontalAlignment,
verticalAlignment,
horizontalTextPosition,
verticalTextPosition, and iconTextGap.

56

Using Labels

// Create an image icon from image file

ImageIcon icon = new ImageIcon("image/grapes.gif");

// Create a label with text, an icon,

// with centered horizontal alignment

JLabel jlbl = new JLabel("Grapes", icon,

SwingConstants.CENTER);

// Set label's text alignment and gap between text and icon

jlbl.setHorizontalTextPosition(SwingConstants.CENTER);

jlbl.setVerticalTextPosition(SwingConstants.BOTTOM);

jlbl.setIconTextGap(5);

57

JTextField
A text field is an input area where the user can type in
characters. Text fields are useful in that they enable the user to
enter in variable data (such as a name or a description).

javax.swing.JTextField

-columns: int

-horizontalAlignment: int

+JTextField()

+JTextField(column: int)

+JTextField(text: String)

+JTextField(text: String, columns: int)

The number of columns in this text field.

The horizontal alignment of this text field (default: LEFT).

Creates a default empty text field with number of columns set to 0.

Creates an empty text field with specified number of columns.

Creates a text field initialized with the specified text.

Creates a text field initialized with the specified text and columns.

javax.swing.text.JTextComponent

-text: String

-editable: boolean

The text contained in this text component.

Indicates whether this text component is editable (default: true).

The get and set methods for these data fields are provided in
the class, but omitted in the UML diagram for brevity.

58

JTextField Constructors

 JTextField(int columns)

 Creates an empty text field with the specified

number of columns.

 JTextField(String text)

 Creates a text field initialized with the specified text.

 JTextField(String text, int columns)

 Creates a text field initialized with the

specified text and the column size.

59

JTextField Properties

text

horizontalAlignment

editable

columns

60

JTextField Methods

 getText()

 Returns the string from the text field.

 setText(String text)

 Puts the given string in the text field.

 setEditable(boolean editable)

 Enables or disables the text field to be edited. By default,

editable is true.

 setColumns(int)

 Sets the number of columns in this text field.

The length of the text field is changeable.

