Lecture 4: Exception Handling and
Text 10 (Ch 14)

Adapted by Fangzhen Lin for COMP3021 from Y.
Danial Liang’s PowerPoints for Introduction to Java

Programming, Comprehensive Version, 9/E,
Pearson, 2013.

Motivations

When a program runs into a runtime error, the
program terminates abnormally. How can you
handle the runtime error so that the program can
continue to run or terminate gracefully? This is the
subject we will introduce in this lecture.

Objectives

To get an overview of exceptions and exception handling (§14.2).
To explore the advantages of using exception handling (§14.2).
To distinguish exception types: Error (fatal) vs. Exception (nonfatal) and checked vs. unchecked (§14.3).
To declare exceptions in a method header (§14.4.1).

To throw exceptions in a method (§14.4.2).

To write a try-catch block to handle exceptions (§14.4.3).

To explain how an exception is propagated (§14.4.3).

To obtain information from an exception object (§14.4.4).

To develop applications with exception handling (§14.4.5).

To use the finally clause in a try-catch block (§14.5).

To use exceptions only for unexpected errors (§14.6).

To rethrow exceptions in a catch block (§14.7).

To create chained exceptions (§14.8).

To define custom exception classes (§14.9).

To discover file/directory properties, to delete and rename files/directories, and to create directories using the
File class (§14.10).

To write data to a file using the PrintWriter class (§14.11.1).
To read data from a file using the Scanner class (§14.11.2).
To understand how data is read using a Scanner (§14.11.3).
To develop a program that replaces text in a file (§14.11.4).
To open files using a file dialog box (§14.12).

To read data from the Web (§14.13).

Exception-Handling Overview

Show runtime error

Fix i1t using an If statement

With a method

http://course.cs.ust.hk/comp3021/slides/html/Quotient.html
http://course.cs.ust.hk/comp3021/slides/html/QuotientWithIf.html
http://course.cs.ust.hk/comp3021/slides/html/QuotientWithMethod.html

Exception Advantages

The advantages of using exception handling: it enables a
method to throw an exception to its caller. Without this
capability, a method must handle the exception or
terminate the program:

* A callee can detect an error but does not know what to
do with It;

A caller needs the callee to tell it whether any error has
occured and decides what to do based on the type of
errors.

http://course.cs.ust.hk/comp3021/slides/html/QuotientWithException.html

Handling InputMismatchException

By handling InputMismatchException, your program will
continuously read an input until it is correct.

http://course.cs.ust.hk/comp3021/slides/html/InputMismatchExceptionDemo.html

Throwable

Exception Types

ClassNotFoundException

IOException

RuntimeException

Many more classes

LinkageError

VirtualMachineError

Many more classes

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Illegal ArgumentException

Many more classes

System errors are thrown by JVM
and represented in the Error class.
The Error class describes internal
system errors. Such errors rarely
occur. If one does, there is little
you can do beyond notifying the
user and trying to terminate the
program gracefully.

Error

ClassNotFoundException

IOException

RuntimeException

Many more classes

LinkageError

VirtualMachineError

Many more classes

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Illegal ArgumentException

Many more classes

Exceptions

Exception describes errors
caused by your program ClassNotFoundException
and external
circumstances. These |OException
errors can be caught and

handled by your program.

ArithmeticException

Exception

NullPointerException
RuntimeException
IndexOutOfBoundsException

Many more classes
Illegal ArgumentException

Many more classes

LinkageError

VirtualMachineError

Error

Many more classes

Runtime Exceptions

ClassNotFoundException

ArithmeticException
IOException

NullPointerException

RuntimeException
IndexOutOfBoundsException I

Many more classes

Object Throwable Illegal ArgumentException

Many more classes

LinkageError
RuntimeException is caused by
programming errors, such as bad

VirtualMachineError casting, accessing an out-of-bounds
array, and numeric errors.

Many more classes

Checked Exceptions vs.
Unchecked Exceptions

RuntimeEXxception, Error and their subclasses are
known as unchecked exceptions. All other
exceptions are known as checked exceptions,

meaning that the compiler forces the programmer
to check and deal with the exceptions.

Unchecked Exceptions

In most cases, unchecked exceptions reflect programming
logic errors that are not recoverable. For example, a
NullPointerException is thrown if you access an object
through a reference variable before an object Is assigned to
It; an IndexOutOfBoundsException is thrown if you access
an element in an array outside the bounds of the array.
These are the logic errors that should be corrected in the
program. Unchecked exceptions can occur anywhere in the
program. To avoid cumbersome overuse of try-catch
nlocks, Java does not mandate you to write code to catch

unchecked exceptions.

Unchecked Exceptions

Throwable

ClassNotFoundException

ArithmeticException
IOException

NullPointerException

RuntimeException
IndexOutOfBoundsException

Many more classes
Illegal ArgumentException

Many more classes

LinkageError

VirtualMachineError Unchef:ked
exception.

Many more classes

Declaring, Throwing, and
Catching Exceptions

methodl ()

invoke method2; § if (an error occurs)

.
3 P 00 eeeeineeeeniirneataaesesesesns -
.

Cauﬂ1excepﬁon %atch (Exception ex) ; ithrow new Exception();
§ Process exception; § :

Declaring Exceptions

Every method must state the types of checked
exceptions it might throw. This is known as

declaring exceptions.

public void myMethod()
throws |IOException

public void myMethod()
throws I0Exception, OtherException

Throwing Exceptions

When the program detects an error, the program
can create an instance of an appropriate
exception type and throw it. This is known as
throwing an exception. Here is an example,

throw new TheException();

throw ex;

Throwing Exceptions Example

/** Set a new radius */

public void setRadius (double newRadius)
nrows lllegalAr ' N
i1f (newRadius >= 0)

radius = newRadius;
else

Catching Exceptions

try |
statements; // Statements that may throw exceptions
}
catch (Exceptionl exVarl) {
handler for exceptionl;
}
catch (Exception?Z2 exVar?2?)
handler for exceptionZ;

}

catch (ExceptionN exVar3)
handler for exceptionN;

}

atching Exceptions

main method [methodl |
try f try |
invoke method2:
statement3s3:

B

catch
Process ex2:

1
statementd:

invoke methodl:
statementl:
1

catch
Process exl:

[Excepntionl exli |

1
statement2:

Call Stack

methodl

main method

[Exception2 ex21 {

An exception
is thrown in
method3

method2 |
try 1
invoke method3:
statements:

1

catch
Process ex3:

[Exception3 ex31 |

1
statementot:

method?2 method?2

methodl methodl

main method main method

Catch or Declare Checked Exceptions

Java forces you to deal with checked exceptions. If a method declares a
checked exception (i.e., an exception other than Error or
RuntimeException), you must invoke it in a try-catch block or declare to
throw the exception in the calling method. For'example, suppose/that

eption (e.g.,

void pl () { void pl () throws IOException {
try {

p2(); P2 () ;
}

catch (IOException ex) {

Example: Declaring, Throwing, and
Catching Exceptions

* Objective: This example demonstrates
declaring, throwing, and catching exceptions
by modifying the setRadius method in the
Circle class defined in Chapter 8. The new
setRadius method throws an exception if
radius is negative.

http://course.cs.ust.hk/comp3021/slides/html/TestCircleWithException.html
html/CircleWithException.html
http://course.cs.ust.hk/comp3021/slides/html/CircleWithException.html

The £inally Clause

try A
statements;

}

catch (TheException ex) {
handling ex;

}

finally {
finalStatements;

J

Trace a Program Execution

try |
statements;

J

catch (TheException ex) {

handling ex;

}
finally {

finalStatements;

J

Next statement;

Trace a Program Execution

try |
statements;

}

catch (TheException ex) {
handling ex;

}
finally {

finalStatements;

J

Next statement;

24

Trace a Program Execution

try |
statements;

}

catch (TheException ex) {
handling ex;

}
finally {

finalStatements;

J

Next statement;

25

Trace a Program Execution

try A
statementl;
statement?’?;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}
finally {

finalStatements;

}

Next statement;

Trace a Program Execution

try A
statementl;
statement?;
statement3;

}

catch (Exceptionl ex)~g
handling ex;

}
finally {

finalStatements;

}

Next statement;

27

Trace a Program Execution

try A
statementl;
statement?;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}
finally {

finalStatements;

}

Next statement;

28

Trace a Program Execution

try A
statementl;
statement?;
statement3;

}

catch (Exceptionl ex) {
handling ex;

}
finally {

finalStatements;

}

Next statement;

29

Trace a Program Execution

try |
statementl;
statement?;
statement3;

}

catch (Exceptionl ex)
handling ex;

}

catch (Exception2?2 ex)

handling ex;
throw ex;

}

finally {
finalStatements;

}

Next statement;

{

{

Trace a Program Execution

try |
statementl;
statement?;
statement3;

}

catch (Exceptionl ex)
handling ex;

}

catch (Exception? ex)

handling ex;
throw ex;

}

finally {
finalStatements;

}

Next statement;

{

(

Trace a Program Execution

try |
statementl;
statement?;
statement3;

}

catch (Exceptionl ex)
handling ex;

}

catch (Exception2?2 ex)

handling ex;
throw ex;

}

finally {
finalStatements;

}

Next statement;

{

{

Trace a Program Execution

try |
statementl;
statement?;
statement3;

}

catch (Exceptionl ex)
handling ex;

}

catch (Exception2?2 ex)

handling ex;
throw ex;

}

finally {
finalStatements;

}

Next statement;

{

{

Cautions When Using Exceptions

* Exception handling separates error-handling
code from normal programming tasks, thus
making programs easier to read and to modify.
Be aware, however, that exception handling
usually requires more time and resources
because it requires instantiating a new
exception object, rolling back the call stack, and
propagating the errors to the calling methods.

When to Throw Exceptions

* An exception occurs in a method. If you want
the exception to be processed by its caller, you
should create an exception object and throw it.
If you can handle the exception in the method
where it occurs, there is no need to throw it.

When to Use Exceptions

When should you use the try-catch block in the code?
You should use it to deal with unexpected error
conditions. Do not use it to deal with simple, expected
situations. For example, the following code

Lry

System.out.println (refVar.toString())

J

catch (NullPointerException ex) {

System.out.println("refVar 1s null");

When to Use Exceptions

is better to be replaced by

1f (refVar != null)
System.out.println (refVar.toString())

else

System.out.println ("refVar 1s null");

Defining Custom Exception Classes

= Use the exception classes in the APl whenever possible.

= Define custom exception classes if the predefined
classes are not sufficient.

= Define custom exception classes by extending
Exception or a subclass of Exception.

Custom Exception Class Example

In Listing 13.8, the setRadius method throws an exception if the
radius Is negative. Suppose you wish to pass the radius to the
handler, you have to create a custom exception class.

http://course.cs.ust.hk/comp3021/slides/html/InvalidRadiusException.html
http://course.cs.ust.hk/comp3021/slides/html/CircleWithRadiusException.html
http://course.cs.ust.hk/comp3021/slides/html/TestCircleWithRadiusException.html

The File Class

The File class is intended to provide an abstraction that
deals with most of the machine-dependent complexities
of files and path names in a machine-independent
fashion. The filename is a string. The File class is a
wrapper class for the file name and its directory path.

Obtaining file
properties
and
manipulating
file

java.io.File

+File (pathname: String)

+File (parent: String,
child: String)

+File (parent: File,
child: String)

+exists(): boolean
+canRead () : boolean

+canWrite(): boolean

t+isDirectory(): boolean

+isFile(): boolean
+isAbsolute () : boolean

+isHidden () : boolean

+getAbsolutePath () :
String

+getCanonicalPath() :
String

+getName () : String

+getPath () : String

+getParent () : String

+lastModified(): long
+length(): long
+1listFiles(): File[]

+delete () : boolean

+renameTo (dest: File):
boolean

+mkdir () : boolean

+mkdirs () : boolean

Creates a Fi 1e object for the specified pathname. The pathname may be a directory
or afile.

Creates a Fi 1e object for the child under the directory parent. The child may be a
filename or a subdirectory.

Creates a Fi 1e object for the child under the directory parent. The parentisa File
object. In the preceding constructor, the parent is a string.

Returns true if the file or the directory represented by the File object exists.
Returns true if the file represented by the Fi1e object exists and can be read.
Returns true if the file represented by the Fi 1e object exists and can be written.
Returns true if the Fi1e object represents a directory.

Returns true if the Fi1le object represents a file.

Returns true if the File object is created using an absolute path name.

Returns true if the file represented in the F'ile object is hidden. The exact
definition of hidden is system-dependent. On Windows, you can mark a file
hidden in the File Properties dialog box. On UNIX systems, a file is hidden if its
name begins with a period (.) character.

Returns the complete absolute file or directory name represented by the File
object.

Returns the same as getAbsolutePath () except that it removes redundant
names, such as "." and "..", from the pathname, resolves symbolic links (on
UNIX), and converts drive letters to standard uppercase (on Windows).

Returns the last name of the complete directory and file name represented by the
File object. For example, new

File ("c:\\book\\test.dat") .getName () returns test.dat

Returns the complete directory and file name represented by the File object. For
example, new File ("c:\\book\\test.dat").getPath () returns
c:\book\test.dat.

Returns the complete parent directory of the current directory or the file represented
by the File object. For example, new
File ("c:\\book\\test.dat") .getParent () returns c:\book

Returns the time that the file was last modified.
Returns the size of the file, or 0 if it does not exist or if it is a directory.
Returns the files under the directory for a directory File object.

Deletes the file or directory represented by this File object. The method returns
true if the deletion succeeds.

Renames the file or directory represented by this Fi1e object to the specified name
represented in dest. The method returns true if the operation succeeds.

Creates a directory represented in this Fi 1e object. Returns true if the directory is
created successfully.

Same asmkdir () except that it creates directory along with it parent directories if
the parent directories do not exist.

Problem: Explore File Properties

Objective: Write a program that demonstrates how to
create files in a platform-independent way and use the
methods In the File class to obtain their properties. The
following figures show a sample run of the program on

Windows and on Unix.

] Command Prompt - ||:|| ﬂ
C:\book>java TestFileClass A
Does it exist? true [

Can it be read? true

Can it be written? true

Is it a directory? false

Is it a file? true

Is it absolute? false

Is it hidden? false

What is its absolute path? C:\book\.\image\us.gif
What is its canonical path? C:\book\image\us.gif
What is its name? us.gif

What is its path? .\image\us.gif

When was it last modified? Sat May 08 14:00:34 EDT 1999

What is the path separator? ;
What is the name separator? \
C:\book> -
€| | L 7

] Command Prompt - telnet panda - ||:|| ﬂ
$ pwd 2
/home/1liang/book _J

$ java TestFileClass

Does it exist? true

Can it be read? true

Can it be written? true

Is it a directory? false

Is it a file? true

Is it absolute? false

Is it hidden? false

What is its absolute path? /home/liang/book/./image/us.gif
What is its canonical path? /home/liang/book/image/us.gif
What is its name? us.gif

What is its path? ./image/us.gif

When was it last modified? Wed Jan 23 11:00:14 EST 2002
What
What
$

-
4 |

is the path separator? :
is the name separator? /

http://course.cs.ust.hk/comp3021/slides/html/TestFileClass.html

Text 1/0O

A File object encapsulates the properties of a file or a
path, but does not contain the methods for
reading/writing data from/to a file. In order to perform
/0, you need to create objects using appropriate Java |/O
classes. The objects contain the methods for
reading/writing data from/to a file. This section
introduces how to read/write strings and numeric values
from/to a text file using the Scanner and PrintWriter
classes.

Writing Data Using PrintWriter

java.io.PrintWriter

+PrintWriter(filename: String)

+print(s: String): void
+print(c: char): void
+print(cArray: char[]): void
+print(i: int): void

+print(l: long): void
+print(f: float): void
+print(d: double): void
+print(b: boolean): void

Also contains the overloaded
println methods.

Also contains the overloaded
printf methods.

Creates a PrintWriter for the specified file.
Writes a string.

Writes a character.

Writes an array of character.

Writes an int value.

Writes a long value.

Writes a float value.

Writes a double value.

Writes a boolean value.

A println method acts like a print method; additionally it
prints a line separator. The line separator string is defined
by the system. It is \r\n on Windows and \n on Unix.

The printf method was introduced in §3.6, “Formatting
Console Output and Strings.”

http://course.cs.ust.hk/comp3021/slides/html/WriteData.html

Reading Data Using Scanner

java.util.Scanner

Creates a Scanner that produces values scanned from the specified file.

+Scanner(source: File)

+Scanner(source: String) Creates a Scanner that produces values scanned from the specified string.

+close() Closes this scanner.

+hasNext(): boolean Returns true if this scanner has another token in its input.
+next(): String Returns next token as a string.

+nextByte(): byte Returns next token as a byte.

Returns next token as a short.

+nextShort(): short
+nextint(): int Returns next token as an int.

+nextLong(): long Returns next token as a long.

+nextFloat(): float Returns next token as a float.

+nextDouble(): double Returns next token as a double.

+useDelimiter(pattern: String): W Sets this scanner’s delimiting pattern.

Scanner

Problem: Replacing Text

Write a class named ReplaceText that replaces a string in a text
file with a new string. The filename and strings are passed as
command-line arguments as follows:

java ReplaceText sourceFile targetFile oldString newString

For example, invoking
java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

replaces all the occurrences of StringBuilder by StringBuffer in

FormatString.java and saves the new file in t.txt.

http://course.cs.ust.hk/comp3021/slides/html/ReplaceText.html

Reading Data from the Web

Just like you can read data from a file on your
computer, you can read data from a file on
the Web.

Client Server

Web

Browser Web
Server

Application Local files
Program

Reading Data from the Web

URL url = new URL("www.google.com/index.html");

After a URL object is created, you can use the
openStream() method defined in the URL class to open an
input stream and use this stream to create a Scanner

object as follows:

Scanner input = new Scanner(url.openStream());

http://course.cs.ust.hk/comp3021/slides/html/ReadFileFromURL.html

Case Study: Web Crawler

This case study develops a program that travels the
Web by following hyperlinks.

Case Study: Web Crawler

The program follows the URLs to traverse the Web. To
make sure that each URL is traversed only once, the
program maintains two lists of URLs. One list stores the
URLs pending for traversing and the other stores the URLs
that have already been traversed. The algorithm for this
program can be described as follows:

Case Study: Web Crawler

Add the starting URL to a list named listOfPendingURLs;
while listOfPendingURLs is not empty {
Remove a URL from listOfPendingURLs;
if this URL is not in listOfTraversedURLs {
Add it to listOfTraversedURLs;
Display this URL;
Exit the while loop when the size of S is equal to 100.
Read the page from this URL and for each URL contained in the page {

Add it to listOfPendingURLs if it is not is listOfTraversedURLs;
}

}
}

http://course.cs.ust.hk/comp3021/slides/html/WebCrawler.html

(GUI) File Dialogs

x|

Look In: ‘ﬁ hook

o0
MEEEIEEE

D SalesTax.java

D score.txt

D scores.txt

D ScroliBarDemo$1.class
D ScroliBarDemo$2.class
D ScroliBarDemo.class

COoooond

1]

File Name: |sc0|‘es.b€t

Files of Type: |AII Files

|v|

‘ QOpen H Cancel |

52

http://course.cs.ust.hk/comp3021/slides/html/ReadFileUsingJFileChooser.html

