
Lecture 4: Exception Handling and
Text IO (Ch 14)

1

Adapted by Fangzhen Lin for COMP3021 from Y.

Danial Liang’s PowerPoints for Introduction to Java

Programming, Comprehensive Version, 9/E,

Pearson, 2013.

Motivations

When a program runs into a runtime error, the
program terminates abnormally. How can you
handle the runtime error so that the program can
continue to run or terminate gracefully? This is the
subject we will introduce in this lecture.

2

Objectives
• To get an overview of exceptions and exception handling (§14.2).

• To explore the advantages of using exception handling (§14.2).

• To distinguish exception types: Error (fatal) vs. Exception (nonfatal) and checked vs. unchecked (§14.3).

• To declare exceptions in a method header (§14.4.1).

• To throw exceptions in a method (§14.4.2).

• To write a try-catch block to handle exceptions (§14.4.3).

• To explain how an exception is propagated (§14.4.3).

• To obtain information from an exception object (§14.4.4).

• To develop applications with exception handling (§14.4.5).

• To use the finally clause in a try-catch block (§14.5).

• To use exceptions only for unexpected errors (§14.6).

• To rethrow exceptions in a catch block (§14.7).

• To create chained exceptions (§14.8).

• To define custom exception classes (§14.9).

• To discover file/directory properties, to delete and rename files/directories, and to create directories using the
File class (§14.10).

• To write data to a file using the PrintWriter class (§14.11.1).

• To read data from a file using the Scanner class (§14.11.2).

• To understand how data is read using a Scanner (§14.11.3).

• To develop a program that replaces text in a file (§14.11.4).

• To open files using a file dialog box (§14.12).

• To read data from the Web (§14.13).

3

Exception-Handling Overview

4

Quotient

QuotientWithIf

Show runtime error

Fix it using an if statement

With a method

QuotientWithMethod

http://course.cs.ust.hk/comp3021/slides/html/Quotient.html
http://course.cs.ust.hk/comp3021/slides/html/QuotientWithIf.html
http://course.cs.ust.hk/comp3021/slides/html/QuotientWithMethod.html

Exception Advantages

5

The advantages of using exception handling: it enables a

method to throw an exception to its caller. Without this

capability, a method must handle the exception or

terminate the program:

• A callee can detect an error but does not know what to

do with it;

•A caller needs the callee to tell it whether any error has

occured and decides what to do based on the type of

errors.

QuotientWithException

http://course.cs.ust.hk/comp3021/slides/html/QuotientWithException.html

Handling InputMismatchException

6

InputMismatchExceptionDemo

By handling InputMismatchException, your program will

continuously read an input until it is correct.

http://course.cs.ust.hk/comp3021/slides/html/InputMismatchExceptionDemo.html

Exception Types

7

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

System Errors

8

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

System errors are thrown by JVM

and represented in the Error class.

The Error class describes internal

system errors. Such errors rarely

occur. If one does, there is little

you can do beyond notifying the

user and trying to terminate the

program gracefully.

Exceptions

9

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Exception describes errors

caused by your program

and external

circumstances. These

errors can be caught and

handled by your program.

Runtime Exceptions

10

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

RuntimeException is caused by

programming errors, such as bad

casting, accessing an out-of-bounds

array, and numeric errors.

Checked Exceptions vs.
Unchecked Exceptions

11

RuntimeException, Error and their subclasses are

known as unchecked exceptions. All other

exceptions are known as checked exceptions,

meaning that the compiler forces the programmer
to check and deal with the exceptions.

Unchecked Exceptions

12

In most cases, unchecked exceptions reflect programming

logic errors that are not recoverable. For example, a

NullPointerException is thrown if you access an object

through a reference variable before an object is assigned to

it; an IndexOutOfBoundsException is thrown if you access

an element in an array outside the bounds of the array.

These are the logic errors that should be corrected in the

program. Unchecked exceptions can occur anywhere in the

program. To avoid cumbersome overuse of try-catch

blocks, Java does not mandate you to write code to catch

unchecked exceptions.

Unchecked Exceptions

13

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Unchecked

exception.

Declaring, Throwing, and
Catching Exceptions

14

method1() {

 try {

 invoke method2;

 }

 catch (Exception ex) {

 Process exception;

 }

}

method2() throws Exception {

 if (an error occurs) {

 throw new Exception();

 }

}

catch exception throw exception

declare exception

Declaring Exceptions

Every method must state the types of checked
exceptions it might throw. This is known as
declaring exceptions.

public void myMethod()
 throws IOException

public void myMethod()
 throws IOException, OtherException

15

Throwing Exceptions

When the program detects an error, the program
can create an instance of an appropriate
exception type and throw it. This is known as
throwing an exception. Here is an example,

throw new TheException();

TheException ex = new TheException();
throw ex;

16

Throwing Exceptions Example

 /** Set a new radius */

 public void setRadius(double newRadius)

 throws IllegalArgumentException {

 if (newRadius >= 0)

 radius = newRadius;

 else

 throw new IllegalArgumentException(

 "Radius cannot be negative");

 }

17

Catching Exceptions

try {

 statements; // Statements that may throw exceptions

}

catch (Exception1 exVar1) {

 handler for exception1;

}

catch (Exception2 exVar2) {

 handler for exception2;

}

...

catch (ExceptionN exVar3) {

 handler for exceptionN;

}

18

Catching Exceptions

19

try

catch

try

catch

try

catch

An exception

is thrown in

method3

Call Stack

main method main method

method1

main method

method1

main method

method1

method2 method2

method3

Catch or Declare Checked Exceptions

Java forces you to deal with checked exceptions. If a method declares a
checked exception (i.e., an exception other than Error or
RuntimeException), you must invoke it in a try-catch block or declare to
throw the exception in the calling method. For example, suppose that
method p1 invokes method p2 and p2 may throw a checked exception (e.g.,
IOException), you have to write the code as shown in (a) or (b).

20

void p1() {

 try {

 p2();

 }

 catch (IOException ex) {

 ...

 }

}

(a)

(b)

void p1() throws IOException {

 p2();

}

Example: Declaring, Throwing, and
Catching Exceptions

• Objective: This example demonstrates
declaring, throwing, and catching exceptions
by modifying the setRadius method in the
Circle class defined in Chapter 8. The new
setRadius method throws an exception if
radius is negative.

21

TestCircleWithException CircleWithException

http://course.cs.ust.hk/comp3021/slides/html/TestCircleWithException.html
html/CircleWithException.html
http://course.cs.ust.hk/comp3021/slides/html/CircleWithException.html

The finally Clause

try {

 statements;

}

catch(TheException ex) {

 handling ex;

}

finally {

 finalStatements;

}

22

Trace a Program Execution

try {

 statements;

}

catch(TheException ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

23

animation

Suppose no
exceptions in the
statements

Trace a Program Execution

try {

 statements;

}

catch(TheException ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

24

animation

The final block is
always executed

Trace a Program Execution

try {

 statements;

}

catch(TheException ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

25

animation

Next statement in the
method is executed

Trace a Program Execution

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

26

animation

Suppose an exception
of type Exception1 is
thrown in statement2

Trace a Program Execution

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

27

animation

The exception is
handled.

Trace a Program Execution

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

28

animation

The final block is
always executed.

Trace a Program Execution

try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

finally {

 finalStatements;

}

Next statement;

29

animation

The next statement in
the method is now
executed.

Trace a Program Execution
try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;

}

Next statement;

30

animation

statement2 throws an
exception of type
Exception2.

Trace a Program Execution
try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;

}

Next statement;

31

animation

Handling exception

Trace a Program Execution
try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;

}

Next statement;

32

animation

Execute the final block

Trace a Program Execution
try {

 statement1;

 statement2;

 statement3;

}

catch(Exception1 ex) {

 handling ex;

}

catch(Exception2 ex) {

 handling ex;

 throw ex;

}

finally {

 finalStatements;

}

Next statement;

33

animation

Rethrow the exception
and control is
transferred to the caller

Cautions When Using Exceptions

• Exception handling separates error-handling
code from normal programming tasks, thus
making programs easier to read and to modify.
Be aware, however, that exception handling
usually requires more time and resources
because it requires instantiating a new
exception object, rolling back the call stack, and
propagating the errors to the calling methods.

34

When to Throw Exceptions

• An exception occurs in a method. If you want
the exception to be processed by its caller, you
should create an exception object and throw it.
If you can handle the exception in the method
where it occurs, there is no need to throw it.

35

When to Use Exceptions

When should you use the try-catch block in the code?
You should use it to deal with unexpected error
conditions. Do not use it to deal with simple, expected
situations. For example, the following code

36

try {

 System.out.println(refVar.toString());

}

catch (NullPointerException ex) {

 System.out.println("refVar is null");

}

When to Use Exceptions

is better to be replaced by

37

if (refVar != null)

 System.out.println(refVar.toString());

else

 System.out.println("refVar is null");

Defining Custom Exception Classes

38

 Use the exception classes in the API whenever possible.

 Define custom exception classes if the predefined

classes are not sufficient.

 Define custom exception classes by extending

Exception or a subclass of Exception.

Custom Exception Class Example

39

InvalidRadiusException

In Listing 13.8, the setRadius method throws an exception if the

radius is negative. Suppose you wish to pass the radius to the

handler, you have to create a custom exception class.

CircleWithRadiusException

TestCircleWithRadiusException

http://course.cs.ust.hk/comp3021/slides/html/InvalidRadiusException.html
http://course.cs.ust.hk/comp3021/slides/html/CircleWithRadiusException.html
http://course.cs.ust.hk/comp3021/slides/html/TestCircleWithRadiusException.html

The File Class

The File class is intended to provide an abstraction that
deals with most of the machine-dependent complexities
of files and path names in a machine-independent
fashion. The filename is a string. The File class is a
wrapper class for the file name and its directory path.

40

Obtaining file
properties
and
manipulating
file

41

 java.io.File

+File(pathname: String)

+File(parent: String,

child: String)

+File(parent: File,

child: String)

+exists(): boolean

+canRead(): boolean

+canWrite(): boolean

+isDirectory(): boolean

+isFile(): boolean

+isAbsolute(): boolean

+isHidden(): boolean

+getAbsolutePath():

String

+getCanonicalPath():

String

+getName(): String

+getPath(): String

+getParent(): String

+lastModified(): long

+length(): long

+listFiles(): File[]

+delete(): boolean

+renameTo(dest: File):

boolean

+mkdir(): boolean

+mkdirs(): boolean

Creates a File object for the specified pathname. The pathname may be a directory

or a file.

Creates a File object for the child under the directory parent. The child may be a

filename or a subdirectory.

Creates a File object for the child under the directory parent. The parent is a File

object. In the preceding constructor, the parent is a string.

Returns true if the file or the directory represented by the File object exists.

Returns true if the file represented by the File object exists and can be read.

Returns true if the file represented by the File object exists and can be written.

Returns true if the File object represents a directory.

Returns true if the File object represents a file.

Returns true if the File object is created using an absolute path name.

Returns true if the file represented in the File object is hidden. The exact

definition of hidden is system-dependent. On Windows, you can mark a file

hidden in the File Properties dialog box. On UNIX systems, a file is hidden if its

name begins with a period (.) character.

Returns the complete absolute file or directory name represented by the File

object.

Returns the same as getAbsolutePath() except that it removes redundant

names, such as "." and "..", from the pathname, resolves symbolic links (on

UNIX), and converts drive letters to standard uppercase (on Windows).

Returns the last name of the complete directory and file name represented by the

File object. For example, new

File("c:\\book\\test.dat").getName() returns test.dat.

Returns the complete directory and file name represented by the File object. For

example, new File("c:\\book\\test.dat").getPath() returns

c:\book\test.dat.

Returns the complete parent directory of the current directory or the file represented

by the File object. For example, new

File("c:\\book\\test.dat").getParent() returns c:\book.

Returns the time that the file was last modified.

Returns the size of the file, or 0 if it does not exist or if it is a directory.

Returns the files under the directory for a directory File object.

Deletes the file or directory represented by this File object. The method returns

true if the deletion succeeds.

Renames the file or directory represented by this File object to the specified name

represented in dest. The method returns true if the operation succeeds.

Creates a directory represented in this File object. Returns true if the directory is

created successfully.

Same as mkdir() except that it creates directory along with it parent directories if

the parent directories do not exist.

Problem: Explore File Properties

42
TestFileClass

Objective: Write a program that demonstrates how to

create files in a platform-independent way and use the

methods in the File class to obtain their properties. The

following figures show a sample run of the program on

Windows and on Unix.

http://course.cs.ust.hk/comp3021/slides/html/TestFileClass.html

Text I/O

A File object encapsulates the properties of a file or a

path, but does not contain the methods for

reading/writing data from/to a file. In order to perform

I/O, you need to create objects using appropriate Java I/O

classes. The objects contain the methods for

reading/writing data from/to a file. This section

introduces how to read/write strings and numeric values

from/to a text file using the Scanner and PrintWriter

classes.

43

Writing Data Using PrintWriter

44

WriteData

java.io.PrintW riter

+ Prin tW riter(filenam e: S tring)

+ prin t(s: Str ing): void

+ prin t(c: char): void

+ prin t(cArray : char[]): void

+ prin t(i: int): void

+ prin t(l: long): void

+ prin t(f: float): void

+ prin t(d: dou ble): void

+ prin t(b: boolea n): void

Also con tains the overloaded

println m ethods.

Also con tains the overloaded

printf m ethods.

.

C reates a PrintW riter for the specified file.

W rites a string .

W rites a character .

W rites a n array o f chara cter.

W rites a n int valu e.

W rites a long value.

W rites a float valu e.

W rites a double valu e.

W rites a boo lea n value .

A println m ethod acts like a pr int m ethod; a dd itionally it

prints a line separator. T he line separator string is defined

by the system . It is \r \n on W indow s and \n on U nix.

T he printf m ethod wa s intro duced in §3 .6 , “F orm atting

C onsole O utpu t a nd S trings.”

http://course.cs.ust.hk/comp3021/slides/html/WriteData.html

Reading Data Using Scanner

45

java.u til.Scanner

+Scanner(source: File)

+Scanner(source: S tring)

+close()

+hasN ext(): boolean

+next(): S tring

+nextB yte(): b yte

+nextShort(): short

+nextIn t(): int

+nextLong(): long

+nextFloat(): float

+nextD ouble(): double

+useD elim iter(pattern : S tring):

Scanner

C reates a Scanner that produces values scanned from the specified file.

C reates a Scanner that produces values scanned from the specified string.

C loses th is scanner.

R eturns true if this scanner has another token in its input.

R eturns next token as a string.

R eturns next token as a byte.

R eturns next token as a short.

R eturns next token as an in t.

R eturns next token as a long.

R eturns next token as a float.

R eturns next token as a double.

Sets this scanner’s delim iting pattern .

Problem: Replacing Text

Write a class named ReplaceText that replaces a string in a text
file with a new string. The filename and strings are passed as
command-line arguments as follows:

java ReplaceText sourceFile targetFile oldString newString

For example, invoking

java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

replaces all the occurrences of StringBuilder by StringBuffer in
FormatString.java and saves the new file in t.txt.

46

ReplaceText

http://course.cs.ust.hk/comp3021/slides/html/ReplaceText.html

Reading Data from the Web

Just like you can read data from a file on your
computer, you can read data from a file on
the Web.

47

Internet

Client Server

Web

Server

Local files

Web

Browser

Application

Program

Reading Data from the Web

URL url = new URL("www.google.com/index.html");

After a URL object is created, you can use the
openStream() method defined in the URL class to open an
input stream and use this stream to create a Scanner
object as follows:

Scanner input = new Scanner(url.openStream());

48

ReadFileFromURL

http://course.cs.ust.hk/comp3021/slides/html/ReadFileFromURL.html

Case Study: Web Crawler

This case study develops a program that travels the
Web by following hyperlinks.

49

 URL1

 URL2

 URL3

Starting URL

 URL11

 URL12

 URL13

URL1

 URL31

 URL32

 URL33 URL4

URL3

 URL21

 URL22

URL2

… … … … … … … … …

Case Study: Web Crawler

The program follows the URLs to traverse the Web. To
make sure that each URL is traversed only once, the
program maintains two lists of URLs. One list stores the
URLs pending for traversing and the other stores the URLs
that have already been traversed. The algorithm for this
program can be described as follows:

50

Case Study: Web Crawler
Add the starting URL to a list named listOfPendingURLs;
while listOfPendingURLs is not empty {
 Remove a URL from listOfPendingURLs;
 if this URL is not in listOfTraversedURLs {
 Add it to listOfTraversedURLs;
 Display this URL;
 Exit the while loop when the size of S is equal to 100.
 Read the page from this URL and for each URL contained in the page {
 Add it to listOfPendingURLs if it is not is listOfTraversedURLs;
 }
 }
 }

51

WebCrawler

http://course.cs.ust.hk/comp3021/slides/html/WebCrawler.html

(GUI) File Dialogs

52

ReadFileUsingJFileChooser

http://course.cs.ust.hk/comp3021/slides/html/ReadFileUsingJFileChooser.html

