
1

Lecture 8: Event-Driven

Programming (Chapter 16)

Adapted by Fangzhen Lin for COMP3021 from Y.

Danial Liang’s PowerPoints for Introduction to Java

Programming, Comprehensive Version, 9/E,

Pearson, 2013.

2

Motivations
Suppose you wish to write a GUI program that lets the
user enter the loan amount, annual interest rate, and
number of years, and click the Compute Loan button to
obtain the monthly payment and total payment. How do
you accomplish the task? You have to use event-driven
programming to write the code to respond to the button-
clicking event.

LoanCalculator

http://course.cs.ust.hk/comp3021/slides/html/LoanCalculator.html

3

Motivations

Suppose you wish to write a program that animates
a rising flag, as shown in Figure 16.1(b-d). How do
you accomplish the task? There are several
solutions to this problem. An effective way to solve
it is to use a timer in event-driven programming,
which is the subject of this lecture.

4

Objectives
 To get a taste of event-driven programming (§16.1).

 To describe events, event sources, and event classes (§16.2).

 To define listener classes, register listener objects with the source object, and

write the code to handle events (§16.3).

 To define listener classes using inner classes (§16.4).

 To define listener classes using anonymous inner classes (§16.5).

 To explore various coding styles for creating and registering listener classes

(§16.6).

 To develop a GUI application for a loan calculator (§16.7).

 To write programs to deal with MouseEvents (§16.8).

 To simplify coding for listener classes using listener interface adapters (§16.9).

 To write programs to deal with KeyEvents (§16.10).

 To use the javax.swing.Timer class to control animations (§16.11).

5

Procedural vs. Event-Driven

Programming

Procedural programming is executed in

procedural order.

 In event-driven programming, code is executed

upon activation of events.

6

Taste of Event-Driven Programming

The example displays a button in the frame. A
message is displayed on the console when a
button is clicked.

HandleEvent

http://course.cs.ust.hk/comp3021/slides/html/HandleEvent.html

7 7

Handling GUI Events

Source object (e.g., button)

Listener object contains a method for

processing the event.

8 8

Trace Execution
public class HandleEvent extends JFrame {

 public HandleEvent() {

 …

 OKListenerClass listener1 = new OKListenerClass();

 jbtOK.addActionListener(listener1);

 …

 }

 public static void main(String[] args) {

 …

 }

}

class OKListenerClass implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 System.out.println("OK button clicked");

 }

}

1. Start from the

main method to

create a window and

display it

animation

9 9

Trace Execution
public class HandleEvent extends JFrame {

 public HandleEvent() {

 …

 OKListenerClass listener1 = new OKListenerClass();

 jbtOK.addActionListener(listener1);

 …

 }

 public static void main(String[] args) {

 …

 }

}

class OKListenerClass implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 System.out.println("OK button clicked");

 }

}

animation

2. Click OK

10 10

Trace Execution
public class HandleEvent extends JFrame {

 public HandleEvent() {

 …

 OKListenerClass listener1 = new OKListenerClass();

 jbtOK.addActionListener(listener1);

 …

 }

 public static void main(String[] args) {

 …

 }

}

class OKListenerClass implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 System.out.println("OK button clicked");

 }

}

animation

3. Click OK. The

JVM invokes the

listener’s

actionPerformed

method

11

Events

An event can be defined as a type of signal

to the program that something has

happened.

The event is generated by external user

actions such as mouse movements, mouse

clicks, and keystrokes, or by the operating

system, such as a timer.

12

Event Classes

AWTEvent EventObject

AdjustmentEvent

ComponentEvent

TextEvent

ItemEvent

ActionEvent

InputEvent

WindowEvent

MouseEvent

KeyEvent

ContainerEvent

FocusEvent

PaintEvent

ListSelectionEvent

ChangeEvent

13

Event Information

An event object contains whatever properties are

pertinent to the event. You can identify the source

object of the event using the getSource() instance

method in the EventObject class. The subclasses of

EventObject deal with special types of events,

such as button actions, window events, component

events, mouse movements, and keystrokes. Next

slide lists external user actions, source objects, and

event types generated.

14

Selected User Actions

 Source Event Type

User Action Object Generated

Click a button JButton ActionEvent

Click a check box JCheckBox ItemEvent, ActionEvent

Click a radio button JRadioButton ItemEvent, ActionEvent

Press return on a text field JTextField ActionEvent

Select a new item JComboBox ItemEvent, ActionEvent

Window opened, closed, etc. Window WindowEvent

Mouse pressed, released, etc. Component MouseEvent

Key released, pressed, etc. Component KeyEvent

15

The Delegation Model

source: SourceClass

 +addXListener(listener: XListener)

listener: ListenerClass

User

Action

Trigger an event

XListener

 +handler(event: XEvent)

Register by invoking

source.addXListener(listener);
(a) A generic source component

with a generic listener

source: JButton

 +addActionListener(listener: ActionListener)

listener: CustomListenerClass

ActionListener

 +actionPerformed(event: ActionEvent)

Register by invoking

source.addActionListener(listener);
(b) A JButton source component

with an ActionListener

16

Internal Function of a Source Component

source: SourceClass

 +addXListener(XListener listener)

(a) Internal function of a generic source object

event: XEvent listener1
listener2

…

listenern

+handler(

Keep it a list

Invoke

listener1.handler(event)

listener2.handler(event)
…

listenern.handler(event)

An event is

triggered

source: JButton

 +addActionListener(ActionListener listener)

(b) Internal function of a JButton object

event:

ActionEvent

listener1

listener2
…

listenern

+handler(

Keep it a list

Invoke

listener1.actionPerformed(event)

listener2.actionPerformed(event)
…

listenern.actionPerformed(event)

An event is

triggered

17

The Delegation Model: Example

JButton jbt = new JButton("OK");

ActionListener listener = new OKListener();

jbt.addActionListener(listener);

18

Selected Event Handlers

Event Class Listener Interface Listener Methods (Handlers)
ActionEvent ActionListener actionPerformed(ActionEvent)

ItemEvent ItemListener itemStateChanged(ItemEvent)

WindowEvent WindowListener windowClosing(WindowEvent)

 windowOpened(WindowEvent)

 windowIconified(WindowEvent)

 windowDeiconified(WindowEvent)

 windowClosed(WindowEvent)

 windowActivated(WindowEvent)

 windowDeactivated(WindowEvent)

ContainerEvent ContainerListener componentAdded(ContainerEvent)

 componentRemoved(ContainerEvent)

MouseEvent MouseListener mousePressed(MouseEvent)

 mouseReleased(MouseEvent)

 mouseClicked(MouseEvent)

 mouseExited(MouseEvent)
 mouseEntered(MouseEvent)
KeyEvent KeyListener keyPressed(KeyEvent)

 keyReleased(KeyEvent)

 keyTypeed(KeyEvent)

19

java.awt.event.ActionEvent

java.awt.event.ActionEvent

+getActionCommand(): String

+getModifiers(): int

+getWhen(): long

Returns the command string associated with this action. For a

button, its text is the command string.

Returns the modifier keys held down during this action event.

Returns the timestamp when this event occurred. The time is

the number of milliseconds since January 1, 1970, 00:00:00
GMT.

java.util.EventObject

+getSource(): Object

Returns the object on which the event initially occurred.

 java.awt.event.AWTEvent

20

Example: First Version for

ControlCircle (no listeners)

Now let us consider to write a program that uses

two buttons to control the size of a circle.

ControlCircleWithoutEventHandling

http://course.cs.ust.hk/comp3021/slides/html/ControlCircleWithoutEventHandling.html

21

Example: Second Version for

ControlCircle (with listener for Enlarge)

Now let us consider to write a program that uses

two buttons to control the size of a circle.

ControlCircle

http://course.cs.ust.hk/comp3021/slides/html/ControlCircle2.html

22

Inner Class Listeners

A listener class is designed specifically to

create a listener object for a GUI

component (e.g., a button). It will not be

shared by other applications. So, it is

appropriate to define the listener class

inside the frame class as an inner class.

Inner Classes

23

Inner class: A class is a member of another class.

Advantages: In some applications, you can use an

inner class to make programs simple.

 An inner class can reference the data and methods

defined in the outer class in which it nests, so you

do not need to pass the reference of the outer class

to the constructor of the inner class.

ShowInnerClass

http://course.cs.ust.hk/comp3021/slides/html/ShowInnerClass.html

24

Inner Classes, cont.

 public class Test {

 ...

}

public class A {

 ...

}

public class Test {

 ...

 // Inner class

 public class A {

 ...

 }

}

(a)

(b)

// OuterClass.java: inner class demo

public class OuterClass {

 private int data;

 /** A method in the outer class */

 public void m() {

 // Do something

 }

 // An inner class

 class InnerClass {

 /** A method in the inner class */

 public void mi() {

 // Directly reference data and method

 // defined in its outer class

 data++;

 m();

 }

 }

}

(c)

25

Inner Classes (cont.)

 Inner classes can make programs simple

and concise.

An inner class supports the work of its

containing outer class and is compiled

into a class named

OuterClassName$InnerClassName.class.

For example, the inner class InnerClass in

OuterClass is compiled into
OuterClass$InnerClass.class.

26

Inner Classes (cont.)

An inner class can be declared public,

protected, or private subject to the same

visibility rules applied to a member of the

class.

An inner class can be declared static. A

static inner class can be accessed using

the outer class name. A static inner class

cannot access nonstatic members of the
outer class

27

Anonymous Inner Classes

Inner class listeners can be shortened using anonymous

inner classes. An anonymous inner class is an inner

class without a name. It combines declaring an inner

class and creating an instance of the class in one step.

An anonymous inner class is declared as follows:

new SuperClassName/InterfaceName() {

 // Implement or override methods in superclass or interface

 // Other methods if necessary

}

AnonymousListenerDemo

http://course.cs.ust.hk/comp3021/slides/html/AnonymousListenerDemo.html

28

Anonymous Inner Classes

 An anonymous inner class must always extend a superclass or
implement an interface, but it cannot have an explicit extends or
implements clause.

 An anonymous inner class must implement all the abstract
methods in the superclass or in the interface.

 An anonymous inner class always uses the no-arg constructor
from its superclass to create an instance. If an anonymous inner
class implements an interface, the constructor is Object().

 An anonymous inner class is compiled into a class named
OuterClassName$n.class. For example, if the outer class Test
has two anonymous inner classes, these two classes are
compiled into Test$1.class and Test$2.class.

29

Alternative Ways of Defining

Listener Classes

There are many other ways to define the listener
classes. For example, you may rewrite
Anonymous Listener Demo by creating just one
listener, register the listener with the buttons,
and let the listener detect the event source, i.e.,
which button fires the event.

DetectSourceDemo

http://course.cs.ust.hk/comp3021/slides/html/DetectSourceDemo.html

30

Alternative Ways of Defining

Listener Classes

You may also define the custom frame class that

implements ActionListener.

FrameAsListenerDemo

http://course.cs.ust.hk/comp3021/slides/html/FrameAsListenerDemo.html

31

Problem: Loan Calculator

LoanCalculator

http://course.cs.ust.hk/comp3021/slides/html/LoanCalculator.html

32

MouseEvent

java.awt.event.MouseEvent

+getButton(): int

+getClickCount(): int

+getPoint(): java.awt.Point

+getX(): int

+getY(): int

Indicates which mouse button has been clicked.

Returns the number of mouse clicks associated with this event.

Returns a Point object containing the x and y coordinates.

Returns the x-coordinate of the mouse point.

Returns the y-coordinate of the mouse point.

java.awt.event.InputEvent

+getWhen(): long

+isAltDown(): boolean

+isControlDown(): boolean

+isMetaDown(): boolean

+isShiftDown(): boolean

Returns the timestamp when this event occurred.

Returns whether or not the Alt modifier is down on this event.

Returns whether or not the Control modifier is down on this event.

Returns whether or not the Meta modifier is down on this event

Returns whether or not the Shift modifier is down on this event.

33

Handling Mouse Events

 Java provides two listener interfaces,
MouseListener and MouseMotionListener,
to handle mouse events.

 The MouseListener listens for actions such as
when the mouse is pressed, released, entered,
exited, or clicked.

 The MouseMotionListener listens for
actions such as dragging or moving the
mouse.

34

Handling Mouse Events

java.awt.event.MouseListener

+mousePressed(e: MouseEvent): void

+mouseReleased(e: MouseEvent): void

+mouseClicked(e: MouseEvent): void

+mouseEntered(e: MouseEvent): void

+mouseExited(e: MouseEvent): void

Invoked when the mouse button has been pressed on the

source component.

Invoked when the mouse button has been released on the

source component.

Invoked when the mouse button has been clicked (pressed and
released) on the source component.

Invoked when the mouse enters the source component.

Invoked when the mouse exits the source component.

java.awt.event.MouseMotionListener

+mouseDragged(e: MouseEvent): void

+mouseMoved(e: MouseEvent): void

Invoked when a mouse button is moved with a button pressed.

Invoked when a mouse button is moved without a button

pressed.

35

Example: Moving Message Using

Mouse
Objective: Create a
program to display a
message in a panel.
You can use the
mouse to move the
message. The
message moves as
the mouse drags and
is always displayed
at the mouse point.

MoveMessageDemo

http://course.cs.ust.hk/comp3021/slides/html/MoveMessageDemo.html

36

Handling Keyboard Events

 keyPressed(KeyEvent e)

 Called when a key is pressed.

 keyReleased(KeyEvent e)

 Called when a key is released.

 keyTyped(KeyEvent e)

 Called when a key is pressed and then

released.

To process a keyboard event, use the following

handlers in the KeyListener interface:

37

The KeyEvent Class

 Methods:

 getKeyChar() method

 getKeyCode() method

 Keys:

 Home VK_HOME

 End VK_END

 Page Up VK_PGUP

 Page Down VK_PGDN

 etc...

38

The KeyEvent Class, cont.

java.awt.event.KeyEvent

+getKeyChar(): char

+getKeyCode(): int

Returns the character associated with the key in this event.

Returns the integer keyCode associated with the key in this event.

java.awt.event.InputEvent

39

Example: Keyboard Events Demo

Objective: Display

a user-input

character. The user

can also move the

character up,

down, left, and

right using the

arrow keys.

KeyEventDemo

http://course.cs.ust.hk/comp3021/slides/html/KeyEventDemo.html

40

The Timer Class

Some non-GUI components can fire events. The javax.swing.Timer

class is a source component that fires an ActionEvent at a predefined

rate.
javax.swing.Timer

+Timer(delay: int, listener:
ActionListener)

+addActionListener(listener:

ActionListener): void

+start(): void

+stop(): void

+setDelay(delay: int): void

Creates a Timer with a specified delay in milliseconds and an

ActionListener.

Adds an ActionListener to the timer.

Starts this timer.

Stops this timer.

Sets a new delay value for this timer.

The Timer class can be used to control animations. For example, you

can use it to display a moving message.

AnimationDemo

http://course.cs.ust.hk/comp3021/slides/html/AnimationDemo.html

41

Clock Animation

The key to making the clock tick is to repaint it every

second with a new current time. You can use a timer to

control how to repaint the clock.

ClockAnimation

http://course.cs.ust.hk/comp3021/slides/html/ClockAnimation.html

