
Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Chapter 3 Control Statements

1

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Objectives

2

 To declare boolean type and write Boolean expressions (§3.2).

 To distinguish between conditional and unconditional && and ||
operators (§3.2.1).

 To use Boolean expressions to control selection statements
(§3.3-3.5).

 To implement selection control using if and nested if statements
(§3.3).

 To implement selection control using switch statements (§3.4).

 To write expressions using the conditional operator (§3.5) .
 To display formatted output using the System.out.printf method

and to format strings using the String.format method (§3.6).

 To know the rules governing operand evaluation order, operator
precedence, and operator associativity (§§3.7-3.8) .

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Comparison Operators

3

Operator Name

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal to

!= not equal to

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Boolean Operators

4

Operator Name

! not

&& and

|| or

^ exclusive or

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Truth Table for Operator !

5

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Truth Table for Operator &&

6

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Truth Table for Operator ||

7

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Truth Table for Operator ^

8

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Examples

9

System.out.println("Is " + num + " divisible by 2 and 3? " +

 ((num % 2 == 0) && (num % 3 == 0)));

System.out.println("Is " + num + " divisible by 2 or 3? " +

 ((num % 2 == 0) || (num % 3 == 0)));

 System.out.println("Is " + num +

 " divisible by 2 or 3, but not both? " +

 ((num % 2 == 0) ^ (num % 3 == 0)));

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Example: Determining Leap Year?

10

LeapYear	

This program first prompts the user to enter a year as
an int value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by
100, or it is divisible by 400.

 (year % 4 == 0 && year % 100 != 0) || (year % 400
== 0)

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Example: A Simple Math Learning Tool

11

AdditionTutor	

This example creates a program to let a first grader practice additions.
The program randomly generates two single-digit integers number1
and number2 and displays a question such as “What is 7 + 9?” to the
student, as shown below. After the student types the answer in the
input dialog box, the program displays a message dialog box to
indicate whether the answer is true or false.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Selection Statements

12

  if Statements

  switch Statements

  Conditional Operators

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Example: An Improved Math Learning Tool
This example creates a program to teach a first grade child
how to learn subtractions. The program randomly
generates two single-digit integers number1 and number2
with number1 > number2 and displays a question such as
“What is 9 – 2?” to the student, as shown in the figure.
After the student types the answer in the input dialog box,
the program displays a message dialog box to indicate
whether the answer is correct, as shown in figure.

13

SubtractionTutor	

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Example: Guessing Birth Date
The program can guess your birth date. Run
to see how it works.

14

GuessBirthDate	

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

switch Statement Rules

15

switch (switch-expression) {
 case value1: statement(s)1;
 break;
 case value2: statement(s)2;
 break;
 …
 case valueN: statement(s)N;
 break;
 default: statement(s)-for-default;
}

The switch-expression must
yield a value of char, byte,
short, or int type and must
always be enclosed in
parentheses.

The value1, ..., and valueN must
have the same data type as the
value of the switch-expression.
The resulting statements in the
case statement are executed when
the value in the case statement
matches the value of the switch-
expression. Note that value1, ...,
and valueN are constant
expressions, meaning that they
cannot contain variables in the
expression, such as 1 + x.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

switch Statement Rules
!The keyword break is

optional, but it should be used at
the end of each case in order to
terminate the remainder of the
switch statement. If the break
statement is not present, the
next case statement will be
executed.

16

switch (switch-expression) {
 case value1: statement(s)1;
 break;
 case value2: statement(s)2;
 break;
 …
 case valueN: statement(s)N;
 break;
 default: statement(s)-for-default;
}

!The default case, which is
optional, can be used to
perform actions when none of
the specified cases matches
the switch-expression.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Conditional Operator
if (x > 0)
 y = 1
else
 y = -1;

is equivalent to

y = (x > 0) ? 1 : -1;
(booleanExpression) ? expression1 : expression2

Ternary operator
Binary operator
Unary operator

17

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Conditional Operator

if (num % 2 == 0)
 System.out.println(num + “is even”);
else
 System.out.println(num + “is odd”);

System.out.println(
 (num % 2 == 0)? num + “is even” :
 num + “is odd”);

18

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Conditional Operator, cont.

(booleanExp) ? exp1 : exp2

19

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Formatting Output

20

Use the new JDK 1.5 printf statement.

System.out.printf(format, items);

Where format is a string that may consist of substrings and
format specifiers. A format specifier specifies how an item
should be displayed. An item may be a numeric value,
character, boolean value, or a string. Each specifier begins
with a percent sign.

JDK 1.5
Feature

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Frequently-Used Specifiers

21

JDK 1.5
Feature

Specifier Output Example

%b a boolean value true or false

%c a character 'a'

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e+01

%s a string "Java is cool"

int count = 5;

double amount = 45.56;

System.out.printf("count is %d and amount is %f", count, amount);

display count is 5 and amount is 45.560000

items

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Creating Formatted Strings
System.out.printf(format, item1, item2, ..., itemk)

22

 String.format(format, item1, item2, ..., itemk)

 String s = String.format("count is %d and amount is %f", 5, 45.56));

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Operator Precedence
How to evaluate 3 + 4 * 4 > 5 * (4 + 3) – 1?

23

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Operator Precedence
•  var++, var--

•  +, - (Unary plus and minus), ++var,--var
•  (type) Casting

•  ! (Not)

•  *, /, % (Multiplication, division, and remainder)
•  +, - (Binary addition and subtraction)
•  <, <=, >, >= (Comparison)
•  ==, !=; (Equality)
•  & (Unconditional AND)

•  ^ (Exclusive OR)

•  | (Unconditional OR)

•  && (Conditional AND) Short-circuit AND
•  || (Conditional OR) Short-circuit OR

•  =, +=, -=, *=, /=, %= (Assignment operator)

24

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Operator Precedence and Associativity

The expression in the parentheses is evaluated first.
(Parentheses can be nested, in which case the expression
in the inner parentheses is executed first.) When
evaluating an expression without parentheses, the
operators are applied according to the precedence rule and
the associativity rule.

If operators with the same precedence are next to each
other, their associativity determines the order of
evaluation. All binary operators except assignment
operators are left-associative.

25

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Operator Associativity
 When two operators with the same precedence

are evaluated, the associativity of the operators
determines the order of evaluation. All binary
operators except assignment operators are left-
associative.

 a – b + c – d is equivalent to ((a – b) + c) – d
 Assignment operators are right-associative.

Therefore, the expression
 a = b += c = 5 is equivalent to a = (b += (c = 5))

26

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Operand Evaluation Order
The precedence and associativity rules
specify the order of the operators, but do not
specify the order in which the operands of a
binary operator are evaluated. Operands are
evaluated from left to right in Java.
The left-hand operand of a binary operator is
evaluated before any part of the right-hand
operand is evaluated.

27

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Operand Evaluation Order, cont.
If no operands have side effects that change the value
of a variable, the order of operand evaluation is
irrelevant. Interesting cases arise when operands do
have a side effect. For example, x becomes 1 in the
following code, because a is evaluated to 0 before +
+a is evaluated to 1.

int a = 0;
int x = a + (++a);

But x becomes 2 in the following code, because ++a
is evaluated to 1, then a is evaluated to 1.

int a = 0;
int x = ++a + a;

28

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Rule of Evaluating an Expression
Rule 1: Evaluate whatever subexpressions you can
possibly evaluate from left to right.

Rule 2: The operators are applied according to their
precedence.

Rule 3: The associativity rule applies for two operators
next to each other with the same precedence.

29

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Rule of Evaluating an Expression
Applying the rule, the expression 3 + 4 * 4 > 5 * (4 + 3) -
1 is evaluated as follows:

30

3 + 4 * 4 > 5 * (4 + 3) - 1

3 + 16 > 5 * (4 + 3) - 1

19 > 5 * (4 + 3) - 1

19 > 5 * 7 - 1

19 > 35 – 1

19 > 34

false

 (1) 4 * 4 is the first subexpression that can
be evaluated from left.

 (2) 3 + 16 is evaluated now.

 (3) 4 + 3 is now the leftmost subexpression

that should be evaluated.

 (4) 5 * 7 is evaluated now.

 (5) 35 – 1 is evaluated now.

 (6) 19 > 34 is evaluated now.

