
Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Chapter 6 Arrays

1

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Objectives
•  To describe why an array is necessary in programming (§6.1).
•  To learn the steps involved in using arrays: declaring array

reference variables and creating arrays (§6.2).
•  To initialize the values in an array (§6.2).
•  To simplify programming using JDK 1.5 enhanced for loop (§6.2).
•  To copy contents from one array to another (§6.3).
•  To develop and invoke methods with array arguments and ruturn

type (§6.4-6.5).
•  To sort an array using the selection sort algorithm (§6.6).
•  To search elements using the linear or binary search algorithm

(§6.7).
•  To declare and create multidimensional arrays (§6.8).
•  To declare and create multidimensional arrays (§6.9 Optional).

2

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Introducing Arrays

3

Array is a data structure that represents a collection of the
same types of data.

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Declaring Array Variables
•  datatype[] arrayRefVar;

 Example:

 double[] myList;

•  datatype arrayRefVar[]; // This style is

allowed, but not preferred

 Example:

 double myList[];

4

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Creating Arrays
arrayRefVar = new datatype[arraySize];

Example:
myList = new double[10];

myList[0] references the first element in the array.
myList[9] references the last element in the array.

5

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Declaring and Creating
in One Step

•  datatype[] arrayRefVar = new
 datatype[arraySize];

 double[] myList = new double[10];

•  datatype arrayRefVar[] = new
 datatype[arraySize];

 double myList[] = new double[10];

6

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

The Length of an Array

Once an array is created, its size is fixed. It cannot be
changed. You can find its size using

arrayRefVar.length

For example,

myList.length returns 10

7

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Default Values
When an array is created, its elements are
assigned the default value of

0 for the numeric primitive data types,
'\u0000' for char types, and
false for boolean types.

8

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Indexed Variables
The array elements are accessed through the index. The
array indices are 0-based, i.e., it starts from 0 to
arrayRefVar.length-1. In the example in Figure 6.1,
myList holds ten double values and the indices are
from 0 to 9.

Each element in the array is represented using the
following syntax, known as an indexed variable:

arrayRefVar[index];

9

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Array Initializers

•  Declaring, creating, initializing in one step:
 double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand syntax must be in one
statement.

10

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Declaring, creating, initializing Using the
Shorthand Notation

double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand notation is equivalent to the
following statements:
double[] myList = new double[4];

myList[0] = 1.9;

myList[1] = 2.9;

myList[2] = 3.4;

myList[3] = 3.5;

11

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

CAUTION
Using the shorthand notation, you
have to declare, create, and initialize
the array all in one statement.
Splitting it would cause a syntax
error. For example, the following is
wrong:

double[] myList;

myList = {1.9, 2.9, 3.4, 3.5};
12

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Enhanced for Loop

JDK 1.5 introduced a new for loop that enables you to traverse the complete array
sequentially without using an index variable. For example, the following code
displays all elements in the array myList:

for (double value: myList)
 System.out.println(value);

In general, the syntax is

for (elementType value: arrayRefVar) {

 // Process the value

}

You still have to use an index variable if you wish to traverse the array in a
different order or change the elements in the array.

13

JDK 1.5
Feature

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Copying Arrays
Often, in a program, you need to duplicate an array or a part of an
array. In such cases you could attempt to use the assignment statement
(=), as follows:

list2 = list1;

14

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Copying Arrays
Using a loop:
int[] sourceArray = {2, 3, 1, 5, 10};

int[] targetArray = new
int[sourceArray.length];

for (int i = 0; i < sourceArrays.length; i++)
 targetArray[i] = sourceArray[i];

15

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

The arraycopy Utility
arraycopy(sourceArray, src_pos,
targetArray, tar_pos, length);

Example:
System.arraycopy(sourceArray, 0,
targetArray, 0, sourceArray.length);

16

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Passing Arrays to Methods
public static void printArray(int[] array) {!
 for (int i = 0; i < array.length; i++) {!
 System.out.print(array[i] + " ");!
 }!
}

17

Invoke the method

int[] list = {3, 1, 2, 6, 4, 2};
printArray(list);

Invoke the method
printArray(new int[]{3, 1, 2, 6, 4, 2});

Anonymous array

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Anonymous Array

The statement
printArray(new int[]{3, 1, 2, 6, 4, 2});

creates an array using the following syntax:
new dataType[]{literal0, literal1, ..., literalk};

There is no explicit reference variable for the array.
Such array is called an anonymous array.

18

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Pass By Value
Java uses pass by value to pass parameters to a method. There
are important differences between passing a value of variables
of primitive data types and passing arrays (or objects).

•  For a parameter of a primitive type value, the actual value is
passed. Changing the value of the local parameter inside the
method does not affect the value of the variable outside the
method.

•  For a parameter of an array type (or object), the value of the
parameter contains a reference to an array (or object); this
reference is passed to the method. Any changes to the array (or
object) that occur inside the method body will affect the original
array (or object) that was passed as the argument.

19

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Simple Example

public class Test {
 public static void main(String[] args) {

 int x = 1; // x represents an int value

 int[] y = new int[10]; // y represents an array of int values

 m(x, y); // Invoke m with arguments x and y

 System.out.println("x is " + x);

 System.out.println("y[0] is " + y[0]);
 }

 public static void m(int number, int[] numbers) {

 number = 1001; // Assign a new value to number

 numbers[0] = 5555; // Assign a new value to numbers[0]

 }

}
20

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Example:
Passing Arrays as Arguments

•  Objective: Demonstrate differences of
passing primitive data type variables
and array variables.

21

TestPassArray	

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Example, cont.

22

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Returning an Array from a Method

int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

23

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

24

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 0 0 0 0

Declare result and create array

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

25

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 0 0 0 0

i = 0 and j = 5

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

26

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 0 0 0 0

i (= 0) is less than 6

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

27

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 0 0 0 1

i = 0 and j = 5
Assign list[0] to result[5]

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

28

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 0 0 0 1

After this, i becomes 1 and j
becomes 4

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

29

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 0 0 0 1

i (=1) is less than 6

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

30

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 0 0 2 1

i = 1 and j = 4
Assign list[1] to result[4]

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

31

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 0 0 2 1

After this, i becomes 2 and j
becomes 3

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

32

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 0 0 2 1

i (=2) is still less than 6

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

33

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 0 3 2 1

i = 2 and j = 3
Assign list[i] to result[j]

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

34

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 0 3 2 1

After this, i becomes 3 and j
becomes 2

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

35

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 0 3 2 1

i (=3) is still less than 6

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

36

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 4 3 2 1

i = 3 and j = 2
Assign list[i] to result[j]

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

37

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 4 3 2 1

After this, i becomes 4 and j
becomes 1

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

38

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 0 4 3 2 1

i (=4) is still less than 6

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

39

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 5 4 3 2 1

i = 4 and j = 1
Assign list[i] to result[j]

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

40

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 5 4 3 2 1

After this, i becomes 5 and j
becomes 0

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

41

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

0 5 4 3 2 1

i (=5) is still less than 6

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

42

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

6 5 4 3 2 1

i = 5 and j = 0
Assign list[i] to result[j]

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

43

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

6 5 4 3 2 1

After this, i becomes 6 and j
becomes -1

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

44

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

6 5 4 3 2 1

i (=6) < 6 is false. So exit
the loop.

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Trace the reverse Method, cont.
int[] list1 = new int[]{1, 2, 3, 4, 5, 6};!
int[] list2 = reverse(list1);

45

public static int[] reverse(int[] list) {!
 int[] result = new int[list.length];!
 !
 for (int i = 0, j = result.length - 1; !
 i < list.length; i++, j--) {!
 result[j] = list[i];!
 }!
 !
 return result;!
}

list

result

1 2 3 4 5 6

6 5 4 3 2 1

Return result

list2

animation

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Two-dimensional Arrays
// Declare array ref var

dataType[][] refVar;

// Create array and assign its reference to variable

refVar = new dataType[10][10];

// Combine declaration and creation in one statement
dataType[][] refVar = new dataType[10][10];

// Alternative syntax

dataType refVar[][] = new dataType[10][10];

46

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Declaring Variables of Two-dimensional
Arrays and Creating Two-dimensional

Arrays

int[][] matrix = new int[10][10];
 or
int matrix[][] = new int[10][10];
matrix[0][0] = 3;

for (int i = 0; i < matrix.length; i++)
 for (int j = 0; j < matrix[i].length; j++)
 matrix[i][j] = (int)(Math.random() * 1000);

double[][] x;

47

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Two-dimensional Array Illustration

48

array.length? 4

array[0].length? 3

matrix.length? 5

matrix[0].length? 5

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Declaring, Creating, and Initializing Using
Shorthand Notations

You can also use an array initializer to declare, create and
initialize a two-dimensional array. For example,

49

int[][] array = new int[4][3];
array[0][0] = 1; array[0][1] = 2; array[0][2] = 3;
array[1][0] = 4; array[1][1] = 5; array[1][2] = 6;
array[2][0] = 7; array[2][1] = 8; array[2][2] = 9;
array[3][0] = 10; array[3][1] = 11; array[3][2] = 12; !

int[][] array = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
};!

Same as

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Lengths of Two-dimensional Arrays

int[][] x = new int[3][4];

50

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Lengths of Two-dimensional Arrays,
cont.

int[][] array = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
};

51

array.length
array[0].length
array[1].length
array[2].length
array[3].length

array[4].length ArrayIndexOutOfBoundsException

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Ragged Arrays
Each row in a two-dimensional array is itself an array. So,

the rows can have different lengths. Such an array is
known as a ragged array. For example,

int[][] matrix = {
 {1, 2, 3, 4, 5},
 {2, 3, 4, 5},
 {3, 4, 5},
 {4, 5},
 {5}
};

52

matrix.length is 5
matrix[0].length is 5
matrix[1].length is 4
matrix[2].length is 3
matrix[3].length is 2
matrix[4].length is 1

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Ragged Arrays, cont.

53

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Multidimensional Arrays
Occasionally, you will need to represent n-dimensional
data structures. In Java, you can create n-dimensional
arrays for any integer n.

The way to declare two-dimensional array variables and
create two-dimensional arrays can be generalized to
declare n-dimensional array variables and create n-
dimensional arrays for n >= 3. For example, the following
syntax declares a three-dimensional array variable scores,
creates an array, and assigns its reference to scores.

 double[][][] scores = new double[10][5][2];

54

Liang, Introduction to Java Programming, Sixth Edition, (c) 2007 Pearson Education, Inc. All
rights reserved. 0-13-222158-6

Example: Calculating Total Scores

•  Objective: write a program that calculates the total score for
students in a class. Suppose the scores are stored in a three-
dimensional array named scores. The first index in scores refers to
a student, the second refers to an exam, and the third refers to the
part of the exam. Suppose there are 7 students, 5 exams, and each
exam has two parts--the multiple-choice part and the programming
part. So, scores[i][j][0] represents the score on the multiple-choice
part for the i’s student on the j’s exam. Your program displays the
total score for each student.

55

TotalScore	

