
Java Programming (Spring 2016) Lab11 COMP3021, April 29, 2016

Problem 1: matrix multiplication

Develop an execution driven simulator for a multiprocessor that solves a 3x3 matrix
multiply (i.e., A x B=C, where A, B, C are 3 x 3 matrixes) following these steps:
1. Define A, B, C as instance variables using a suitable data-structure
2. Set the values in the constructor
3. Create a thread for every processor so that each processor will compute one element

of the resulting matrix.
4. In each thread calculate one element (i.e., multiply the elements of one raw from A

and one column from B, and add the results to get the value of C[i][j]).
5. The main thread should wait until all the other threads are done and then print the

matrix C.

We provide two source files named Matrix.java and MultThread.java, respectively. You
need to write some codes in each file.
Task:
1. In MultThread.java, you need to write how to calculate C[i][j] in run() function.
2. In MultThread.java, you need to write the code to start the work of each thread in

dowork() function.

Output is showed as follow:

Problem 2: Counter

Description
The GUI program has two buttons. Pushing the "Start Counting" button starts the
counting. Pushing the "Stop Counting" button is supposed to stop (pause) the counting.
The two button-handlers communicate via a boolean flag called stop. The stop-button
handler sets the stop flag; while the start-button handler checks if stop flag has been set
before continuing the next count. You	 should	modify	 the	 code	we	 provide	 to	make	 it	 run	
correctly	(we	have	provided	the	demo	of	the	correct	version	on	the	website.)	

Java Programming (Spring 2016) Lab11 COMP3021, April 29, 2016

Hint:
What you need to do is to use a thread in addActionListener function.

Problem 3: Inter-thread communication

Description
This is a producer-consumer problem.
The results of the code we provide to you are unpredictable;
The correct result should be that:
a number may be read before a number has been produced or multiple numbers may
be produced with only one or two being read adding synchronization ensures that a
number is first produced, then read in the correct order.
So you need to modify the code to achieve the correct result.

Hint:
In this problem, you need to perform inter-thread communication by the usage of wait(),
notify(), and notifyAll() methods.

Output is showed as follow:

