
Basic

Object-oriented PHP

COMP 2021
Unix and Script Programming

Object-Oriented Programming (OOP)

 OOP is a programming paradigm (a style of coding)

 Allows developers to group similar tasks into classes

 Follow ‘don’t repeat yourself (DRY)’ tenet

 Minimum change in code if task is updated

Why Classes and Objects?

 PHP is a primarily procedural language

 Small programs are easily written without adding any

classes or objects

 Larger programs, however, become cluttered with so

many disorganized functions

 Grouping related data and behavior into objects helps

manage size and complexity

 The concept applies to many other programming

languages, e.g. C++, Java, Python, etc.

Objected Oriented Concepts

 Data abstraction and encapsulation

 Object, class and instance

 Member variable and member function

 Constructor and destructor

 Inheritance, parent class and child class

 Polymorphism and overloading

Object, Class, Instance

 Object

 A self-contained component

 With properties and methods

 Make a certain type of data useful

 Class

 A blueprint or template or set of instructions to build a specific type of

object.

 Every object is built from a class.

 Each class should be designed and programmed to accomplish one, and

only one thing

 Typically, many classes are used to build an entire application

 Instance

 A specific object built from a specific class

Metaphor: Building a House

 Class: blueprint for a house

 Blueprint itself is not a house

 Follow blueprint (instantiate) to make an actual house

 Object: house built according to the blue print

 Data / Property: wood, wires and concrete that compose the house

 Method: data needs to be assembled according to blueprint, otherwise it’s just a

pile of stuff

 Instance: a specific actual house

 Classes form the structure of data and actions and use that information to

build objects

Example: Constructing and Using

Object (with existing Class)

construct an object

$name = new ClassName(parameters);

access an object's field (if the field is public)

$name->fieldName

call an object's method

$name->methodName(parameters);

PHP

 Instantiation: make a new instance and is typically done using the new

keyword

 Test whether a class is installed with class_exists()

<?php

zip.php unzip a zip file

use ZipArchive class http://www.php.net/zip

$zip = new ZipArchive();

$zip->open("zipExample.zip");

$zip->extractTo("zipExample/");

$zip->close();

?>?> PHP

Class Declaration Syntax

class ClassName {

fields - data inside each object

public $name; # public field

private $name; # private field

constructor - initializes each object's state

public function __construct(parameters) {

statement(s);

}

method - behavior of each object

public function name(parameters) {

statements;

}

} PHP

First OOP PHP Script

 -> is an OOP construct that accesses the contained

properties and methods of a given object.

<?php

ooHelloWorld.php

class MyClass{

public $prop1 = "I'm a class property!";

}

#

$obj = new MyClass;

see the contents of the class

var_dump($obj);

access an object

echo $obj->prop1; # Output the property

?>

PHP

Define Class Methods

 Objects refer to themselves using $this in class declaration

<?php

ooClassMethods.php

class MyClass{

public $prop1 = "I'm a class property!";

public function setProperty($newval){

$this->prop1 = $newval;

}

public function getProperty(){

return $this->prop1 . "
";

}

}

$obj = new MyClass;

echo $obj->getProperty(); # Get the property value

$obj->setProperty("I'm a new property value!"); # Set a new one

echo $obj->getProperty(); # Read it out again to show the change

?> PHP

Multiple Instances of the Same Class

 OOP keeps objects as separate entities

 The power of OOP becomes apparent when using multiple

instances of the same class

oo2instances.php

Create two objects

$obj = new MyClass;

$obj2 = new MyClass;

Get the value of $prop1 from both objects

echo $obj->getProperty();

echo $obj2->getProperty();

Set new values for both objects

$obj->setProperty("I'm a new property value!");

$obj2->setProperty("I belong to the second instance!");

Output both objects' $prop1 value

echo $obj->getProperty();

echo $obj2->getProperty();

PHP

Constructor

 Constructor method __construct()is called automatically whenever a

new object is created

 It takes care of initialization when an object is instantiated

 __CLASS__ is a predefined magic constant

<?php

ooConstructor.php

class MyClass{

public $prop1 = "I'm a class property!";

public function __construct(){

echo 'The class "', __CLASS__, '" was initiated!
';

}

public function setProperty($newval) {$this->prop1 = $newval;}

public function getProperty(){return $this->prop1 . “\n";}

}

$obj = new MyClass;

echo $obj->getProperty();

?>

PHP

http://us3.php.net/manual/en/language.constants.predefined.php

Destructor

 When the end of a file is reached, PHP automatically releases all resources

 The destructor method __destruct() is called when the object is destroyed.

 It is useful for class cleanup (e.g. closing a database connection)

 To explicitly trigger the destructor, you can destroy the object using unset()

<?php

ooDestructor.php

class MyClass {

public $prop1 = "I'm a class property!";

public function __construct() {

echo 'The class "', __CLASS__, '" was initiated!
';

}

public function __destruct() {

echo 'The class "', __CLASS__, '" was destroyed.
';

}

public function setProperty($newval) {$this->prop1 = $newval; }

public function getProperty() {return $this->prop1 . "
"; }

}

$obj = new MyClass;

echo $obj->getProperty();

echo "End of file.
";

?> PHP

Magic Methods in PHP

 Magic methods allow to define the reaction when certain

event happen to the object

 PHP reserves all function names starting with __ as

magical

 Example of the events

 Construct and destruct: __construct(), __destruct()

 Getting and setting: __get(), __set()

 Check if set, unset: __isset(), __unset()

 Treat the object as a string: __toString()

 Sleep and wakeup: __sleep(), __wakeup()

 and more …

http://php.net/manual/en/language.oop5.magic.php

Magic Method Example: __toString()
<?php

#ooToString.php

class MyClass {

public $prop1 = "I'm a class property!";

public function __construct() {

echo 'The class "', __CLASS__, '" was initiated!
';}

public function __destruct() {

echo 'The class "', __CLASS__, '" was destroyed.
';}

public function __toString(){

echo "Using the toString method: ";

return $this->getProperty();}

public function setProperty($newval) {

$this->prop1 = $newval; }

public function getProperty(){

return $this->prop1 . "
";}

}

$obj = new MyClass;

echo $obj; # treat the object as a string

unset($obj);

?> PHP

Visibility of Properties and Methods

 Methods and properties are assigned visibility for added

control over objects

 Visibility is a new feature as of PHP 5

 Public: accessible anywhere, both within the class and

externally

 Protected: accessible within the class itself or in

descendant classes

 Private: accessible only from within the class that defines

it

Example: Private Method
<?php

ooPrivate.php

class MyClass{

public $prop1 = "I'm a class property!";

public function __construct(){

echo 'The class "', __CLASS__, '" was initiated!
';}

public function __destruct(){

echo 'The class "', __CLASS__, '" was destroyed.
';}

public function __toString() {

echo "Using the toString method: ";

return $this->getProperty();

}

public function setProperty($newval) {

$this->prop1 = $newval;}

private function getProperty(){

return $this->prop1 . "
";}

}

$newobj = new MyClass;

fatal error: Call to private method MyClass::getProperty()

echo $newobj->getProperty();

?>

Class Inheritance

 Classes can inherit the methods and properties of another
class using the extends keyword.
<?php

ooInheritance.php

class MyClass {

public $prop1 = "I'm a class property!";

public function __construct(){

echo 'The class "', __CLASS__, '" was initiated!
'; }

public function __destruct(){

echo 'The class "', __CLASS__, '" was destroyed.
'; }

public function __toString() {

return $this->getProperty(); }

public function setProperty($newval) {

$this->prop1 = $newval; }

public function getProperty() {

return $this->prop1 . "
"; }

}

class MyOtherClass extends MyClass {

public function newMethod() {

echo "From a new method in " . __CLASS__ . ".
"; }

}

$newobj = new MyOtherClass;

echo $newobj->newMethod();

echo $newobj->getProperty();

?>

Overwriting Inherited Properties and

Methods

 To change the behavior of an existing property or

method in the new class, simply overwrite it by declaring

it again in the new class

class MyOtherClass extends MyClass

{

#overwrite the constructor in MyClass

public function __construct(){

echo "A new constructor in " . __CLASS__ . ".
";

}

public function newMethod(){

echo "From a new method in " . __CLASS__ . ".
";

}

}

refer to ooOverwrite.php for full script

Preservation while Overloading

 How to add new functionality to an inherited method

while keeping the original method intact?

 Use the parent keyword with the scope resolution
operator (::)

class MyOtherClass extends MyClass {

public function __construct() {

call constructor from parent class

parent::__construct();

echo "A new constructor in " . __CLASS__ . ".
";}

refer to ooScopeResolution.php for full script

DocBlocks

 The DocBlock commenting style is a widely accepted

method of documenting classes

 Block comment starts with an additional *

 Powerful with ability to use tags: @author, @copyright,

@license, @var, @param, @return

Example: DocBlock
<?php

#Full example at ooDocBlock.php

/**

* A simple class

*

* This is the long description for this class.

* It may span as many lines as needed.

* Not compusorly but nice to have.

*

* It can also span multiple paragraphs.

*

* @author Cindy LI <lixin@cse.ust.hk>

* @copyright 2016 Cindy LI

* @license http://www.php.net/license/3_01.txt PHP License 3.01

*/

class SimpleClass {

/**

* A public variable

*

* @var string stores data for the class

*/

public $foo;

PHP

