
Web Programming

Fundamentals

COMP 2021
Unix and Script Programming

The World Wide Web & Internet

 Internet
 Originated from ARPANET, was in more recognizable form in 1990

 A collection of computers or networking devices connected together.

 Have communication between each other.

 Decentralized design: no centralized body controls how the Internet
functions.

 World Wide Web (WWW)
 Proposed by Tim Berners-Lee at CERN on 1991.

 A collection of documents that are interconnected by hyper-links

 Stored on networked computers over the world

 These documents are accessed by web browsers and provided by web
servers.

1980 vs. 2014

World Wide Web Consortium (W3C)

 Web standards are defined by W3C

 The specifications form the Web standards: HTML, CSS, XML,

XHTML, …

 W3C's long term goals for the Web are:

1. Universal Access: To make the Web accessible to all by promoting

technologies that take into account the vast differences in culture,

languages, education, ability, material resources, and physical limitations of

users on all continents;

2. Semantic Web : To develop a software environment that permits each

user to make the best use of the resources available on the Web;

3. Web of Trust : To guide the Web's development with careful consideration

for the novel legal, commercial, and social issues raised by this

technology.

The web as a platform for applications

Feature Web app. Desktop app.

Graphics Strong Unlimited

User interaction Strong Unlimited

Network usage High Varies

Accessible from Any computer Where installed

Upgrade cost Update servers Update desktop

Data backup cost Backup servers Backup desktop

Popularity Increasing Dominant

Client and Server

 Client

 Reads in the homepage (HTML page), parse it and display it with appropriate

layout

 Server

 receives requests from client computers, processes and sends the output.

 provides static / dynamic webpages (e.g. retrieve and store information from/to

the database and generate dynamic homepage to web clients)

 Web Development / Web Programming

 The process of creating, modifying web pages.

Web Application Architecture

Web browser

(Client)

Web server/

Application server Storage system

HTTP LAN

In
te

rn
e

t

L
A

N

Web Programming

 Write programs to enable interactions between web

clients and web servers

 To be more concrete, your programs are responsible for:

 deciding the layout of the page in advance

 creating web pages on-the-fly in responding users’ input

 recording/retrieving users’ information to/from the database

 Client-side and server-side scripting

9

Client-side scripting

 Usually embedded into HTML pages

 User's web browser executes the script, then displays the

document, including any visible output from the script.

 Script language: JavaScript, Ajax, ActionScript (animation for

Adobe Flash Player)

 Function: add interactivity to HTML pages

 Put dynamic text into an HTML page

 Validate data before it is submitted to a server

 Response to certain user actions, (e.g., clicking a button)

 Create cookies

Server-side scripting

 Executed at web server to produce a response customized

for each user's (client's) request to the website

 In the early days, a combination of C, Perl scripts and shell scripts

using the Common Gateway Interface (CGI)

 Executed by the operating system, and results served back by the

web server

 Many modern web servers can directly execute on-line

scripting languages

 PHP: Open source, strong database support (*.php)

 ASP.NET: Microsoft product, uses .Net framework (*.asp)

 JSP: Java via JavaServer Pages (*.jsp)

 Ruby (*.rb), Python (*.py), ColdFusion Markup (*.cfm), Perl via CGI.pm

module (*.cgi, *.pl)

 …

Client-side: Hypertext Markup

Language (HTML)

Browser environment is different

 Traditional app: GUIs based on pixels

 Since 1970s: software accessed mapped framebuffers (R/G/B)

 Toolkits build higher level GUI widgets (buttons, tables, etc.)

 Until the most recent HTML5’s canvas region, you couldn’t write pixels

 Web browsers display documents described in HTML

 Only give the content and structure of the document, leave

visualization to the browser

 Browsers vary (graphical, text based, mobile devices)

 User preferences vary (some people like larger fonts)

 Environment varies (screen sizes, fonts available, etc.)

 But authors want to control what the document looks like

 Trend towards separating content from presentation

 Cascading Style Sheets (CSS)

HTML: HyperText Markup Language

 It is not a programming language.

 Cannot be used to describe computations.

 Use to describe the general form and layout of documents to

be displayed by the browser.

 Markup language: include “Content” and “Directives” (i.e.

control)

 Example: <i>italics word</i>, <title>Title words</title>

 Approach

 Start with content to be displayed

 Annotate it with <> tags

HTML Tags

 Tags can provide:

 Formatting information (e.g. <i> for italic)

 Meaning of text:

 <h1> means top-level heading

 <p> means paragraph

 for unordered (bulleted) list

 Additional information to display (e.g.)

 Tags can have tags inside (nesting supported)

Example of HTML – Start with raw

context text

Introduction

There are several good reasons for taking COMP2021: Unix

and Script Programming

You will learn a variety of interesting concepts.

Unix, Shell, Shell script, PHP, JavaScript.

It will give you the tools to explore further.

Example of HTML - Annotate with tags

<h2>Introduction</h2>

<p>

 There are several good reasons for taking

 <i>COMP2021: Unix and Script Programming</i>

</p>

 You will learn a variety of interesting concepts.

 Unix, Shell, Shell script, PHP, JavaScript.

 It will give you the tools to explore further.

Example of HTML – Browser Output

HTML Evolution

 Browser implementation quirks
 What to do if you see “ <p> Some text” (missing closing

</p>)?

 1. Complain bitterly about malformed HTML.

 2. Figure out there was a missing </p> , add it, and continue
processing.

 Forked into HTML and XHTML (XML-based HTML)
 XHTML is more strict about adhering to proper syntax

XHTML to add structure, conventions – early 2000's;

 Now moving to HTML5

 Cascading Stylesheets (CSS): 1996; current
implementation CSS3

 Javascript (1995), Flash (1996), AJAX, JQuery

XHTML

 Document Structure

 XHTML DOCTYPE is mandatory

 The xmlns attribute in <html> is mandatory

 <html>, <head>, <title>, and <body> are mandatory

 XHTML Elements

 XHTML elements must be properly nested

 XHTML elements must always be closed

 XHTML elements must be in lowercase

 XHTML documents must have one root element

 XHTML Attributes

 Attribute names must be in lower case

 Attribute values must be quoted

 Attribute minimization is forbidden

XHTML with minimum required tags

Indicate that this is an XHTML document, conforming to version 1.0 of the standard; use these lines

verbatim in all the web pages you create for this class.

Outermost element containing the document

Contains miscellaneous things such as page title, CSS stylesheets, etc.

The main body of the document

HTML vs. XHTML

 HTML supports the same tags, same features, but allows

quirkier syntax

 Can skip some end tags, such as </br>, </p>

 Not all attributes have to have values: <select multiple>

 Elements can overlap: <p> first </p><p>secondthird</p>

 Early browsers tried to "do the right thing" even in the face of

incorrect HTML

 Ignore unknown tags

 Carry on even with obvious syntax errors such as missing <body> or

</html>

 Infer the position of missing close tags

 Guess that some < characters are literal, as in "What if x < 0?"

 Not obvious how to interpret some documents (and browsers differed)

22

SGML, HTML and XML

Meta
Language

Language

defines

Use of
language

simplifies

XML definitions XML definitions Meta data

Data webpages XML
documents

XHTML

XML

 XML stands for EXtensible Markup Language.

 XML was designed to store and transport data.

 XML was designed to be both human- and machine-

readable.

 Example:

The document as a tree

<html>

 <head>

 <title>A Document</title>

 </head>

 <body>

 <h1>A web page</h1>

 <p>A <i>simple</i> paragraph</p>

 </body>

</html>

document

<html>

<head> <body>

<title>

“A document”

<h1>

<p>

“A web page”

“A ”

“simple”

“ paragraph” <i>

(X)HTML Quick Reference

(Self-study)

Elements, Tags, Attributes

 An element in a predefined building block of the document.

 An element is marked using tags in the document as

 An element has a name.

 An element may have zero or more attributes (some are

required and some are optional)

 <p align="right"> … </p>

Element name
Attribute Name

Attribute Value

A "p" element

Start/Opening tag End/Closing tag

Main HTML Elements

 DOCTYPE

• Specify which "version" of HTML/XHTML the current
document adheres to

 html

• Appear exactly once.

 head

 title element required

 Optional elements:
 base, meta, script, style, link

 Appear exactly once

 body

• Appear exactly once (immediately after the head
element)

HTML Character Entity References

 Some characters have special meaning in an HTML documents
and therefore must be represented as character entity
references.

 A character entity reference can take two forms
 &name; name is a predefined name

 &#N; where N is an integer number

Result Description Entity Name Entity Number

non-breaking space

< less than < <

> greater than > >

& ampersand & "

" quotation mark " &

' apostrophe ' '

Reference: http://www.w3schools.com/html/html_entitiesref.asp

http://www.w3schools.com/html/html_entitiesref.asp
http://www.w3schools.com/html/html_entitiesref.asp
http://www.w3schools.com/html/html_entitiesref.asp

White Space

 Each newline/tab character is replaced by a space character.

 Consecutive white space characters, including tab, newline, and

space characters, are collapsed into a single space character.

 To output multiple spaces, use non-breaking space entity

() . For example,

 A B

will produce three spaces between A and B

 Exception: white space characters are preserved in the <pre>

element.

Content Formatting
 Headings (h1, h2, h3, h4, h5, h6)

 <h1> defines the largest heading. <h6> defines the smallest heading.

 Paragraphs (p)

 May have attribute align with possible value of "left", "right", "center", and

"justify".

 Line break (br)

 Used when you want to end a line, but don't want to start a new

paragraph. The
 tag forces a line break wherever you place it.

 <p>This is paragraph.</p>
<p align="center">This is another
paragraph.</p>

<p align="right">This is line one of
paragraph 3

and this is line two of paragram
3.</p>

Text Formatting

 Physical Character Styles

 Bold (b), italics (i), teletype (tt), underline (u), subscript(sub),

superscript (sup), small text (small), big text (big), deleted text

(del), inserted text (ins)

 Logical Character Styles

 Emphasized text (em), strong text (strong), computer code (code),

sample computer code text (samp), citation (cite), …

HTML Link and Anchor (a)

 To create a link to a resource identifiable by a URL
 href: specify a URL of the target resource

 target: specify where to display the target document

 e.g.: Home

 Open the document "index.htm" in a new browser window

 Can also be used to create an anchor within a document
 name: specify the anchor name

 e.g.: <h2>Chapter 1</h2>

 The above anchor can be referred to in a URL as

 Chapter 1

 Note: The role of "anchor" may be replaced by the "id" attribute in the
future and any element can be treated as an anchor.

Absolute and Relative URLs

 Absolute URL
 A complete URL beginning with http://

 e.g., http://www.example.com/foo/index.html

 Relative URL
 Interpreted as relative to the URL of the current document

 Suppose the URL of the current document is

 http://www.example.com/foo/bar/index.html

 path/index.html is interpreted as

 http://www.example.com/foo/bar/path/index.html

 /index.html is interpreted as

 http://www.example.com/index.html

 ../index.html is interpreted as

 http://www.example.com/foo/index.html

http://www.example.com/foo/bar/index.html

Unordered List (ul)

 Use to specify list items

Item 1

Item 2

<ul type="square">

Item 1

Item 2

<ul type="circle">

Item 1

Item 2

Ordered List (ol)

Item 1

Item 2

<ol type="A" start="5">

Item 1

Item 2

<ol type="i" start="10">

Item 1

Item 2

RGB color model

36

Tables (table)

 Define a table

 A table is divided into rows (with the <tr> tag), and each row

is divided into data cells (with the <td> tag)

<table border="1">

<tr>

<td>row 1, cell 1</td>

<td>row 1, cell 2</td>

</tr>

<tr>

<td>row 2, cell 1</td>

<td>row 2, cell 2</td>

</tr>

</table>

<h4>Cell that spans two
columns:</h4>

<table border="1">

<tr>

 <th>Name</th>

 <th colspan="2">Telephone</th>

</tr>

<tr>

 <td>Bill Gates</td>

 <td>555 77 854</td>

 <td>555 77 855</td>

</tr>

</table>

<h4>Cell that spans two rows:</h4>

<table border="1">

<tr>

 <th>First Name:</th>

 <td>Bill Gates</td>

</tr>

<tr>

 <th rowspan="2">Telephone:</th>

 <td>555 77 854</td>

</tr>

<tr>

 <td>555 77 855</td>

</tr>

</table>

Embedded Images (img)

 To embed an image (jpg, gif, png) in a document.

 Example
<img src="SomeFile.gif" alt="My Dog" title="My

Dog“ width="400" height="300" />

 Basic attributes:
 src: URL of the image (required)

 alt: Alternate text description of the image (technically required)

 title: text to appear when mouse cursor hovers above the image

 width, height: display the image in this dimension

Block-level and Inline Elements

 Block-level Elements

 A block-level element takes up the full width available, with a
new line before and after

 e.g.: p, div, table, list, h1, …, h6, …

 div is a generic block element

 Inline Elements

 An inline element takes up only as much width as it needs, and
does not force new lines

 e.g.: img, a, b, i, button, span, …

 span is a generic inline element

 Note: The "block/inline" property can be modified using CSS.

Client-side: Cascading Style

Sheets (CSS)

Why CSS?

 How what font type and size does <h1> Introduction

</h1> generate?

 Answer: Some default from the browser (HTML tells what

browser how)

 Early HTML - Override defaults with attributes

 <table border = “2” bordercolor = “black”>

 Style sheets were added to address this:

 Specify style to use rather than browser default

 Not have to code styling on every element

42

Key concept: Separate style from

content

 Content (what to display) is in HTML files

 Formatting information (how to display it) is in separate

style sheets (.css files).

 Use an element attribute named class to link (e.g. <span

class=”test”>)

 Result: define style information once, use in many places

 Consider can you make all the text in the app slightly bigger?

 Or purple is our new company color.

 DRY principle: Don't Repeat Yourself

44

Connecting HTML to CSS

 Styles can be embedded inline with the style attribute

 Style sheets can be chosen by media type

 Simply add a media attribute to the link or style tags

 Choose from: screen, tty, tv, projection, handheld, braille, aural, all

 HTML document can provide several stylesheet options

 Give titles to each stylesheet

 One preferred (default) style, the rest are alternates

 e.g., http://www.w3.org/Style/Examples/007/alternatives.html

 Default configuration in internal browser stylesheet and user
stylesheet

http://www.w3.org/Style/Examples/007/alternatives.html
http://www.w3.org/Style/Examples/007/alternatives.html
http://www.w3.org/Style/Examples/007/alternatives.html
http://www.w3.org/Style/Examples/007/alternatives.html
http://www.w3.org/Style/Examples/007/alternatives.html

45

Connecting HTML to CSS (cont.)

 HTML document typically refers to external style

sheet
 <HEAD>

 <LINK rel="stylesheet" type="text/css“

 href="fluorescent.css">

 </HEAD>

 Style sheets can be embedded:

 <HEAD><STYLE type="text/css">
 <!-- …CSS DEFINITIONS.. -->

 </STYLE></HEAD>

CSS Rules

CSS Example

CSS Selectors

CSS Pseudo Selectors

 hover - Apply rule when mouse is over element (e.g.

tooltip)

 p:hover, a:hover {

 background-color: yellow;

 }

 a:link, a:visited - Apply rule when link has been

visited or not visited (link)

 a:visited { color: green; }

 a: link: {color: blue; }

CSS Properties

 Control many style properties of an element:

 Coloring

 Size

 Position

 Visibility

 Many more

Example: CSS Box Model

