
Shell Programming

COMP 2021
Unix and Script Programming

http://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=JcvfBB4zwrknRM&tbnid=UKo3IFma3yvgOM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww-h.eng.cam.ac.uk%2Fhelp%2Ftpl%2Funix%2Fscripts%2Fnode2.html&ei=qyUrUebSGcaciAfiu4DIBA&psig=AFQjCNEzUpauHzGrzfDrCLItFjyamFzdug&ust=1361868578693194
http://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=JcvfBB4zwrknRM&tbnid=UKo3IFma3yvgOM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww-h.eng.cam.ac.uk%2Fhelp%2Ftpl%2Funix%2Fscripts%2Fnode2.html&ei=qyUrUebSGcaciAfiu4DIBA&psig=AFQjCNEzUpauHzGrzfDrCLItFjyamFzdug&ust=1361868578693194

Shells and Script

 A shell can be used in one of two ways:

 A command interpreter, used interactively

 A programming language, to write shell scripts (your own

custom commands)

 Script

 It is very similar to a program, although it is usually much simpler

to write and it is executed from source code (or byte code) via an

interpreter. Shell scripts are scripts designed to run within a

command shell.

Practical Example

 Distribute grade to individual student via email
#!/bin/sh

read csv file and distribute student grade via email

input="SampleGrade.csv"

set "," as the field separator using $IFS

and read line by line using while loop

subject="COMP2021 HW1 grade"

while IFS="," read -r stuid email grade

do

echo "$stuid $email $grade"

echo "Dear $stuid Your COMP2021 HW1 grade is $grade" | tr -d \\r | mail -

s "$subject" $email

echo "email sent!"

done < "$input"

SampleGrade.csv

1,aaa@ust.hk,95

2,bbb@ust.hk,87

3,lixin@ust.hk,100

Shell Scripts

 A shell script is just a file containing shell commands, but

with a few extras:

 The first line of a shell script should begin with a shebang (#!),

followed by the full path of the shell we’d like to use as an

interpreter:

#!/bin/sh

for a most commonly used Bourne shell script.

 A shell script must be readable and executable.

chmod u+rx scriptname

 As with any command, a shell script has to be “in your path” to

be executed.

 If “.” is not in your PATH, you must specify “./scriptname” instead

of just “scriptname”

Shell Script Example

 Here is a “hello world” shell script:
$ ls -l

-rwxr-xr-x 1 cindy 48 Feb 19 11:50 HelloWorld

$ cat helloworld.sh

#!/bin/sh

comment lines start with the # character

echo "Hello world"

$ helloworld.sh

Hello World

 The echo command functions like a print command in

shell scripts.

Shell Variables

 To get anything done we need variables

 To read the values in variables, precede their names by a
$

 The contents of any variable can be listed using the echo

command

 Types of variables: local and environment

$ echo $SHELL

/bin/tcsh

http://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=4B7VwOnhTbyQgM&tbnid=Pxt1Jfjc9yVExM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.gwdeltagamma.com%2F2012%2F08%2Forganizational-competency-variable-2%2F&ei=xCkrUaLrO62UiQfQh4HYCA&psig=AFQjCNE6qwS5_RzO0S1ctIr6nFVkXil_qg&ust=1361869586335476
http://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=4B7VwOnhTbyQgM&tbnid=Pxt1Jfjc9yVExM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.gwdeltagamma.com%2F2012%2F08%2Forganizational-competency-variable-2%2F&ei=xCkrUaLrO62UiQfQh4HYCA&psig=AFQjCNE6qwS5_RzO0S1ctIr6nFVkXil_qg&ust=1361869586335476

Shell Variables (Cont.)

 The user variable name can be any sequence of letters, digits,

and the underscore character, but the first character must be a

letter

 Internally, all values are stored as strings.
$ cat variable.sh

#! /bin/sh

There cannot be any space before or after the "="

Internally, all values are stored as strings

number=50

course="COMP2021"

echo "$course has $number students"

$ variable.sh

COMP2021 has 50 students

User Input

 Use the read command to get and store input from the user.

$ cat read.sh

#!/bin/sh

Use read command to get and store input from the user

echo "Enter name: "

read name

echo "How many girlfriends do you have?"

read number

echo "$name has $number girlfriends!"

$ read.sh

Enter name:

Hoffman Playboy

How many girlfriends do you have?

too many

Hoffman Playboy has too many girlfriends!

User Input (Cont.)
 read reads one line of input from the keyboard and assigns it

to one or more user-supplied variables.

 Leftover input words are all assigned to the last variable.
$ cat read2.sh

#!/bin/sh

Use read command to get and store input from the user

echo "Enter name and how many girlfriends: "

read name number

echo "$name has $number girlfriends!"

$ read2.sh

Enter name and how many girlfriends:

Edison Chen 50

Edison has Chen 50 girlfriends!

$ read2.sh

Enter name and how many girlfriends:

Poorguy

Poorguy has girlfriends!

Quoting

Quoting Description

Single quote All special characters between these quotes lose their special

meaning.

Double quote Most special characters between these quotes lose their

special meaning with these exceptions:
$, `, \$, \‘, \“, \\

Backslash Any character immediately following the backslash loses its

special meaning

Back Quote Anything in between back quotes would be treated as a

command and would be executed

Quoting (Cont.)
$ cat quoting.sh

#!/bin/sh

Different quotes

DATE=`date`

echo "Current date: $DATE“

user=`whoami`

numusers=`who | wc -l`

echo "Hi $user! There are $numusers users logged on."

echo "I have \$5000.“

echo "It\'s Shell Programming"

echo '<-$1500.**>; (update?) [y\n]‘

$ quoting.sh

Current date: Sat Feb 27 10:27:51 HKT 2016

Hi Cindy! There are 5 users logged on.

I have $5000.

It\'s Shell Programming

<-$1500.**>; (update?) [y\n]

expr

 Shell programming is not good at numerical computation,
it is good at text processing.

 expr command allows simple integer calculations.
 +, -, *, /, %, =, ==, !=

 Here is an interactive Bourne shell example:
$ i=1

$ expr $i + 1

2

 To assign the result of an expr command to another
shell variable, surround it with backquotes:

$ i=1

$ i=`expr $i + 1`

$ echo $i

2

expr (cont.)

 The * character normally means “all the files in the
current directory”, so you need a “\” to use it for
multiplication:

$ i=2

$ i=`expr $i * 3`

$ echo $i

6

 expr also allows you to group expressions, but the “(“
and “)” characters also need to be preceded by
backslashes:

$ i=2

$ echo `expr 5 * \($i + 3 \)`

25

expr Example
$ cat expr.sh

#!/bin/sh

Example of expr, a simple calculator

echo "Enter the first operand: "

read a

echo "Enter the second operand: "

read b

echo "$a + $b = `expr $a + $b`"

x=`expr $a - $b`

echo "$a - $b = $x"

y=`expr $a * $b`

echo "$a * $b = $y"

echo "$a / $b = `expr $a / $b`"

Control Flow

 The shell allows several control flow
statements:
 if

 while

 for

 break

if

 The if statement works mostly as expected:
 if then fi

 if then else fi

 if then elif then else fi

$ cat if_greeting.sh

#!/bin/sh

user=`whoami`

if [$user = “cindy"]

then

echo "Hi cindy!"

fi

$ if_greeting.sh

Hi cindy!

 the spaces before and after the square brackets [] are
required.

if Example 1

 The if then else statement

$ cat if_evenodd.sh

#!/bin/sh

echo "Enter the number:"

read n

num=$(expr $n % 2)

if [$num -eq 0]

then

echo "is a even number."

else

echo "is an odd number."

fi

if Example 2

 The if then elif else statement

$ cat if_load.sh

#!/bin/sh

users=`who | wc -l`

if [$users -ge 4]

then

echo "Heavy load"

elif [$users -gt 1]

then

echo "Medium load"

else

echo "Just me!"

fi

$ if_load.sh

Just me!

while Example: Factorial
 $ cat while_factorial.sh

#!/bin/sh

use while to do factorial

echo "Enter member: "

read n

fac=1

i=1

while [$i -le $n]

do

fac=`expr $fac * $i`

i=`expr $i + 1`

done

echo "The factorial of $n is $fac"

$ while_factorial.sh

Enter number:

5

The factorial of 5 is 120

while Example 2: Armstrong
$cat while_armstrong.sh

#!/bin/sh

echo "Enter a number"

read n

arm=0

temp=$n

while [$temp -ne 0]

do

r=$(expr $temp % 10)

arm=$(expr $arm + $r * $r * $r)

temp=$(expr $temp / 10)

done

echo "Number is $n, cubes of its digits is $arm"

if [$arm -eq $n]

then

echo "Armstrong"

else

echo "Not Armstrong"

fi

371 is an Armstrong number, since

3**3 + 7**3 + 1**3 = 371

break Example

 The break command works like in C++, breaking out
of the innermost loop

$ cat while_break.sh

#!/bin/sh

while [1]

do

echo "Wakeup [yes/no]?"

read resp

if [$resp = "yes"]

then

break

fi

done
$ while_break.sh
Wakeup [yes/no]?
no
Wakeup [yes/no]?
y
Wakeup [yes/no]?
yes

Boolean Expressions

 Relational operators:
-eq, -ne, -gt, -ge, -lt, -le

 File operators:
-f file True if file exists and is not a directory

-d file True if file exists and is a directory

-s file True if file exists and has a size > 0

 String operators:
-z string True if the length of string is zero

-n string True if the length of string is nonzero

s1 = s2 True if s1 and s2 are the same

s1 != s2 True if s1 and s2 are different

s1 True if s1 is not the null string

 Boolean operators:
!, -a, -o (or && ||)

Environment Variables

 An environment variable is a variable that is available to

any child process of the shell.

You can use (and change) them.

HOME The path to your home directory

PATH Directories where the shell looks for executables

USER Your login name

SHELL The name of the shell you are running

PWD The current working directory

Environment Variable Example
$ cat env_variable.sh

#!/bin/sh

echo "Hi $USER!"

echo "Your home directory: $HOME"

echo "Your path: $PATH"

echo "Your current directory: $PWD"

echo "Your shell: $SHELL"

echo "The list of all environment variables"

echo `env`

Command Line Arguments

 The command line arguments that you call a script with

are stored in variables $1, $2, ..., $9 (positional

parameters).
$ cat arguments.sh

#!/bin/sh

echo "The arguments are $1 $2 $3 $4 $5 $6 $7 $8 $9“

echo “There’re $# arguments“

$ arguments.sh a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

The arguments are a1 a2 a3 a4 a5 a6 a7 a8 a9

There’re 10 arguments

 With more than 9 arguments, they are still stored, but
they have to be moved using the shift command

before they can be accessed.

 $# is the number of arguments received

Command Line Argument Example

 A script to swap two files
$ cat swapfile.sh

#!/bin/sh

if [-f $1] && [-f $2]

then

mv $1 /tmp/$1

mv $2 $1

mv /tmp/$1 $2

else

echo "file doesn't exist!"

fi

$ cat file1

This is file1

$ cat file2

This is file2

$ swapfile.sh file1 file2

$ cat file1

This is file2

$ cat file2

This is file1

shift

 The shift command promotes each command line argument

by one (e.g., the value in $2 moves to $1, $3 moves to $2,

etc.)
$ cat shiftargs.sh

#!/bin/sh

echo "The arguments are 0 = $0, 1 = $1, 2 = $2"

shift

echo "The arguments are 0 = $0, 1 = $1, 2 = $2"

shift

echo "The arguments are 0 = $0, 1 = $1, 2 = $2"

$ shiftargs.sh arg1 arg2 arg3

The args are 0 = shiftargs, 1 = arg1, 2 = arg2

The args are 0 = shiftargs, 1 = arg2, 2 = arg3

The args are 0 = shiftargs, 1 = arg3, 2 =

 $0 is the name the user typed to invoke the shell script
 The previous $1,$2 becomes inaccessible

shift Example

 A general version of the

swap command for two or

more files?

swap f1 f2 f3 ... fn_1 fn

f1 <--- f2

f2 <--- f3

f3 <--- f4

...

fn_1 <--- fn

fn <--- f1

$cat swapmanyfiles.sh

#!/bin/sh

orig1=$1

mv $1 /tmp/$1

while [$2]

do

mv $2 $1

shift

done

mv /tmp/$orig1 $1

set

 The set command sets the command line arguments

 It is useful for moving the output of command

substitution into the command line arguments

$ date

Sat Feb 22 12:41:55 HKT 2014

$ cat setargs.sh

#!/bin/sh

set yat yih saam

echo "In Cantonese: 1 is $1, 2 is $2, 3 is $3"

set `date`

echo "Today is $3 $2 $6“

$ setargs.sh

In Cantonese: 1 is yat, 2 is yih, 3 is saam

Today is 27 Feb 2016

Special Parameters

Variable Description

$0 The filename of the current script.

$n The arguments with which a script was invoked. n is a positive decimal

number corresponding to the position of an argument.

$# The number of arguments supplied to a script.

$* Stores all the arguments in a list of string

$@ Stores all the arguments as a single string

$? Stores the exit status of last command. If last command runs successfully

then it will be 0 and other value if not.

$$ The process number of the current shell. For shell scripts, this is the

process ID under which they are executing.

$! The process number of the last background command.

$$

 $$ is the process ID (PID) of the current process (the

shell script PID, or the shell PID if interactive).
$ cat pid

#!/bin/sh

echo $$

$ pid

1154

$ pid

1156

$ pid

1157

$ echo $$

892

$ ps

PID TTY TIME CMD

892 pts/0 0:01 tcsh

$$ (Cont.)

 It can be used for temporary file names:
$ cat swapfile2.sh

#!/bin/sh

file=/tmp/tmp$$

echo "Prepare a temp file name $file"

mv $1 $file

mv $2 $1

mv $file $2

$ swapfile2.sh

Prepare a temp file name /tmp/tmp5827

for Example: C-style for loop

$ cat for_randnum.sh

#!/bin/sh

for ((i=1; i<=5; i++))

do echo "Random number $i: $RANDOM"

done

$ for_randnum.sh

Random number 1: 23320

Random number 2: 5070

Random number 3: 15202

Random number 4: 23861

Random number 5: 23435

for Example: keyword in

 Print out contents of all files under current directory

$ cat catall.sh

#!/bin/sh

for file in *

do

if [-f $file]

then

echo "View $file [y/n]?"

read resp

if [$resp = "y"]

then

cat $file

fi

fi

done

for Example: Special Parameters

 If the “in ___” part is omitted, it defaults to $*

$ cat dollarstar.sh

#!/bin/sh

for file

do

if [-f $file]

then

cat $file

fi

done

$ dollarstar.sh file1 file2

This is file1

This is file2

