COMP 2021

Unix and Script Programming

Regular Expression

Matching a vserhame:
@ .and finally the end of the line.

/AN[a-2z0-9_-1{3,16}%/

............................................

The beginning of the line...


http://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=5FjFMpYT6A9edM&tbnid=YVbRwoVy04_naM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.networkintellect.com%2Fblog%2Fgoing-deeper-with-regular-expressions%2F&ei=I-5PUamrB4SOiAeU2oHgDA&psig=AFQjCNHhPUJDWuYKB7_Z17mCbo8z_cuQYA&ust=1364279159149220
http://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=5FjFMpYT6A9edM&tbnid=YVbRwoVy04_naM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.networkintellect.com%2Fblog%2Fgoing-deeper-with-regular-expressions%2F&ei=I-5PUamrB4SOiAeU2oHgDA&psig=AFQjCNHhPUJDWuYKB7_Z17mCbo8z_cuQYA&ust=1364279159149220

What is a Regular Expression?

> A regular expression (regex) describes a set of possible
Input strings

» Descend from a fundamental concept in Computer
Science called finite automata theory

» Regular expressions are endemic to Unix
Shell, vim, emacs
awk, sed, grep
Perl and Python

Compilers



Simple Regular Expressions

» The simplest regular expressions are a string of literal
characters to match

» The string matches the regular expression if it contains
the substring

» Example: regular expression:| C | K | S

String | matches: Unix Tools rocks.
String 2 matches: Unix Tools sucks.
String 3 no match: Unix Tools is Okay.
> Regular expression can match a string in more than one
place.

alplpll]|e

> Example: regular expression:

String: Scrapple from the apple.



More Complex Regular Expressions

> You don’t just have to match on fixed strings

» You can match on just anything by using complex regular
expressions

» Example: matching an email
*([a-z0-9 \.-]+)@([\da-z\.-]+)\. ([a-z\.]{2,6})S



Single Character Pattern

> The . regular expression matches any single character except
the newline (\n)

Example: regular expression | ©

String: For me to poop on

» Character class [ ] can be used to match any specific set of
characters.
Example: regular expression

bl [eor] |a]t

String: beat a brat on a boat

[aeiouAEIOU] matches any of the 5 vowels in either upper or lower
case.

» Character class can be negated with the ["] syntax
Example: regular expression | b | ["eo] | a ‘ t

String: beat a brat on a boat



Single-Character Pattern (cont.)

» Use - for range of characters (like a through z)
[0123456789] matches any single digit
[0-9] is the same

Backslash ] or — if you want them in the list
[X\=2Z] matches X, -,Z

» More range examples:
[0-9\-1 matches 0-9, or minus
[0-9a-z] matches any digit or lowercase letter
[a-zA-Z0-9 ] matches any letter, digit, underscore
[70123456789] matches any single non-digit
["0—=9] same as above
[ "ae10uAETIOQU] matches any single non-vowel

[

“\"1  matches any single character except A



Named Character Classes

» Commonly used character classes can be referred to by
name:

PredefinedGroup Negated Negated Group
\d (a digit) [0-9] \D (non-digit) [~0-9]

\w (word char) [a-zA-Z0-9 ] \W (non-word) [~a-zA-Z0-9 ]

\s (space char) [ \t\n] \S (non-space) [~ \t\n]

\d matches any digit
\w matches any letter, digit, underscore
\ s matches any space, tab, newline

> You can use these predefined groups in other groups:
[\da-fA-F] match any hexadecimal digit



Anchors

» Anchors are used to match beginning or end of the line
(or both)

» N means beginning of the line
> $ means end of the line

~ bl [eor] |alt

Example: regular expression
String: beat a brat on the boat

Example: regular expression |b| [eor] |a |t|S$
String: beat a brat on the boat




Repetition

» The * is used to define zero or more occurrences of the single
regular expression preceding it

. *
> Example: regular expression |Y |2 Y

> String: | got a mail, yaaaaaaaaaaaay!

» Example: regular expression |0 [a |* |O

» String: For me to poop on.



Repetition Ranges

> Ranges can also be specified

{ } notation can specify a range of repetitions for the immediately
preceding regex

{n} means exactly n occurrences

{n,} means at least n occurrences

{n,m} means at least n occurrences but no more than m occurrences

» Example
x{5,10} five to ten X’s x{5,} five or more Xx’s
x{5} exactly five x’s x{0,5} up to five x’s
c.{5}d cfollowed by any 5 characters (which can be different) and

ending with d
* same as {0,}



Subexpressions

> If you want to group part of an expression so that * or { }
applies to more than just the previous character, use ()
notation

» Subexpresssion is treated like a single character
» Example:

a* matches 0 or more occurrences of a
abc* matches ab, abc, abcc, abccg, ...

(abc) * matches abc, abcabc, abcabcabe, ...
(abc) {2, 3} matches abcabc or abcabcabc



Escaping Special Characters

» Even though we are single quoting our regexs so the shell
won’t interpret the special characters, some characters
are special to grep (eg * and .)

> To get literal characters, we escape the character with a \
(backslash)
» Example: search 'a*b*'

Unless we do something special, this will match zero or more
‘a’s followed by zero or more ‘b’s, not what we want

‘a\*b\*’ will fix this



Protecting Regex Metacharacters

» Since many of the special characters used in regexs also
have special meaning to the shell, it’s a good idea to get in
the habit of single quoting your regexs

» This will protect special characters from being operated
on by the shell

Single quote ‘'’ :take the string as is
g€ q g



3ep

» grep comes from the ed (Unix text editor) search
command “global regular expression print”

> This was such a useful command that it was written as a
standalone utility

> grep is the answer to the moments where you know you
want the file that contains a specific phrase but you can’t
remember its name



grep, grep, egrep
» grep uses regular expressions for pattern matching

» fgrep file grep, does not use regular expressions, only
matches fixed strings but can get search strings from a file

» egrep extended grep, uses a more powerful set of
regular expressions but does not support backreferencing
Acronym: extended global regular expressions print

egrep = grep -E (extended regular expressions, which
treats +, ?, |, (, and ) as meta-characters



egrep: Multipliers

> Multipliers allows you to say “one or more of these” or
“up to four of these”

* zero or more of the immediately previous character (or
character group).

+ one or more of the immediately previous character (or
character group).

? means zero or one of the immediately previous character
(or character group).
> *,+,and ? are greedy, and will match as many characters
as possible



Metacharacters and Repetition

Quantifiers: specify how many instances of a character, group, or
character class must be present in the input for a match to be found.

Metacharacters \/Repetitl'on

char meaning a* Zero of motre a's

A | beginning of string a+ One Of Mofe a's

$ |end of string a? zero or one a's (i.e., optional a)

any character except newline aim} exactly m a’s
¥ | match 0 or more times aim} at least m a’s
+ |match 1 or more times aim,m} at least m but at most 1 a’s
. same as repetition but the shortest
? |match 0 or 1 times; o7 shortest match repetition? . petit
match is taken
| |alternative .. .
Read the notation «’s as “occurrences of strings, each

() |erouping; “storing™ of which matches the pattern o~ Read rgpetition as

any of the repetiion expressions hsted above it.
[ ] S Shortest match means that the shortest string

[} |repetition modifier matching the pattern is taken. The default 1s “greedy
matching”, which finds the longest match. The

repetition? construct was introduced in Perl version 3.

\ |quote or special

To present a metacharacter as a data character
standng for itself, precede it with \ (e.g. \.
matches the full stop character . only).



egrep: Alteration

» Alternation character | for matching one or more
subexpression
(b|c)at matches ‘bat’ or ‘cat’
" (From|Subject) : matches the From and Subject lines of a typical
email message
» For single character alternatives, [abc]is the same as
(alblc)

> Subexpressions are used to limit the scope of the alternation

At (ten|nine) tion matches “Attention” or “Atninetion”, not

“Atten” or “ninetion” as would happen without the parenthesis -
Atten|ninetion



grep: Pattern Memory

> How would we match a pattern that starts and ends with
the same letter or word

> For this, we need to remember the pattern.

» Use () around any pattern to put that part of the string
into memory (it has no effect on the pattern itself)
» To recall memory, you can backreference using backslash
with an integer
\n is the backreference specifier, where n is a number

Looks for nth subexpression



Pattern Memory Example

Bill (.)Gates\1

Matches a string starting with Bi 11, followed by any single non-newline character,
followed by Gates, followed by that same single character.

matches: Bill!Gates'! Bill-Gates-

does not match:Bill?Gates! Bill-Gates
note that Bill.Gates. would match all four

a(.)b(.)c\2d\1

matches a string starting with a, a character (#1), followed by b, another single
character (#2), c, the character #2, d, and the character #I.

matches: a-b!c!d-.

a(.*)b\lc

matches an a, followed by any number of characters (even zero), followed by b,
followed by the same sequence of characters, followed by c.

matches: aBil1lbBillc and abc
does not match aBil1bBillGatesc.



Practical Regex Examples

> Variable names in C
[a-zA-7Z J[a-zA-Z 0-9]~*

» Dollar amount with optional cents
\S[0-9]+(\.[0-9]1[0-9])7

» Time of day
(100121 1[1-91):[0-5]1[0-9] (am|pm)

> HTML headers <h|> <HI|> <h2> ...
<[hH] [1-4]>



More

ixamples

Examples
expression | matches...
abc abc (that exact character sequence, but anywhere in the string)
“abe abc at the beginning of the string
abcd abc at the end of the string
alb eitherof aand b
*abc|abc$ |the string abc at the beginning or at the end of the string
ab{2,4}c |an a followed by two, three or four b's followed by a c
ab{2}c an a followed by at least two b's followed by a c
ab*c an a followed by any number (zero or more) of b's followed by a c
ab+c an a followed by one or more b’s followed by ac
ab?c an a followed by an optional b followed by a c; that is, either abc or ac
a.c an a followed by any single character (not newline) followed by ac
a\.c a.c exactly
[abc] any one of a, b and c
[Aa]bc either of Abc and abc
[abc]+ any (nonempty) string of a’s, b’s and c's (such as a, abba, achabcacaa)
[~abc]+ any (nonempty) string which does #mo¢ contain any of a, b and c (such as defg)
\did any two decimal digits, such as 42; same as '\d{2}
\w+ a “word™: a nonempty sequence of alphammmeric characters and low lines (underscores),
such as foo and 12bars and foo_1
100\s*mk nth;:].;iélgs 100 and mk optionally separated by any amount of white space (spaces, tabs,
abc\b abc when followed by a word boundary (e.g. in abc! but not in abed)
perl\B perl when not followed by a word boundary (e.g. in perlert but not in perl stuff)




Precedence

> What happens with the pattern: a|p*
> Is this (aip)* or aj (b*)

» Precedence of patterns from highest to lowest

Name Representation
Parentheses ()
Multipliers ? 4+ * {m,n}
Sequence & anchoring abc ~ S
Alternation |

» Use parentheses
If want the other interpretation

in ambiguous cases to improve clarity, even if not strictly needed

When you use parentheses for precedence, they also go into memory

(\1, \2, \3)



Precedence Examples

abc* # matches ab, abc, abcc, abccc,..

(abc) * # matches "", abc, abcabc, abcabcabg, ..

~alb # matches a at beginning of line, or b
anywhere

~(alb) # matches either a or b at the beginning of
line

albc|d # a, or bc, or d

(alb) (cld) # ac, ad, bc, or bd



Fun with Dictionary

> /usr/share/dict/words contains about 48,000

words (in CSE lab 2 machine) cachexy
grep '“.a...x.$’ /usr/share/dict/words carboxy
grep "\ (.*\)\1$’ /usr/share/dict/words martext

> egrep as a simple spelling checker, specify plausible panmixy

alternatives you know
egrep ‘n(ielei)ther’” /usr/share/dict/words
» How many words have 3 a’s one letter apart?

egrep ‘a.a.a’ /usr/share/dict/words | wc -1

» Palindrome!?
Find out all 4-letter palindromes

How about 5-letter palindromes



Quick Quiz

> What does this match? ~ [ \t]+

How to match a floating point number? Integers or floating point number without
integer part should be matched too. (+3.14159,2,.618,-1.5)

Is this correct [-+]1?2[0-9]*\.?2[0-9]*
[-+]2([0-9]1*\.[0-9]+][0-9]+)
[-+]2[0-9]*\.?2[0-9]+
A=+]2[0-9]1*\.2[0-9]+S



