
Regular Expression

COMP 2021
Unix and Script Programming

http://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=5FjFMpYT6A9edM&tbnid=YVbRwoVy04_naM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.networkintellect.com%2Fblog%2Fgoing-deeper-with-regular-expressions%2F&ei=I-5PUamrB4SOiAeU2oHgDA&psig=AFQjCNHhPUJDWuYKB7_Z17mCbo8z_cuQYA&ust=1364279159149220
http://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=5FjFMpYT6A9edM&tbnid=YVbRwoVy04_naM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.networkintellect.com%2Fblog%2Fgoing-deeper-with-regular-expressions%2F&ei=I-5PUamrB4SOiAeU2oHgDA&psig=AFQjCNHhPUJDWuYKB7_Z17mCbo8z_cuQYA&ust=1364279159149220

What is a Regular Expression?

 A regular expression (regex) describes a set of possible

input strings

 Descend from a fundamental concept in Computer

Science called finite automata theory

 Regular expressions are endemic to Unix

 Shell, vim, emacs

 awk, sed, grep

 Perl and Python

 Compilers

Simple Regular Expressions

 The simplest regular expressions are a string of literal

characters to match

 The string matches the regular expression if it contains

the substring

 Example: regular expression:

 String 1 matches: Unix Tools rocks.

 String 2 matches: Unix Tools sucks.

 String 3 no match: Unix Tools is Okay.

 Regular expression can match a string in more than one

place.

 Example: regular expression:

 String: Scrapple from the apple.

c k s

a p p l e

More Complex Regular Expressions

 You don’t just have to match on fixed strings

 You can match on just anything by using complex regular

expressions

 Example: matching an email
^([a-z0-9_\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})$

Single Character Pattern

 The . regular expression matches any single character except
the newline (\n)

 Example: regular expression

 String: For me to poop on

 Character class [] can be used to match any specific set of
characters.
 Example: regular expression

 String: beat a brat on a boat

 [aeiouAEIOU] matches any of the 5 vowels in either upper or lower
case.

 Character class can be negated with the [^] syntax
 Example: regular expression

 String: beat a brat on a boat

o .

b [eor] a t

b [^eo] a t

Single-Character Pattern (cont.)

 Use - for range of characters (like a through z)

 [0123456789] matches any single digit

 [0-9] is the same

 Backslash] or – if you want them in the list

 [X\-Z] matches X, -, Z

 More range examples:
 [0-9\-] matches 0-9, or minus

 [0-9a-z] matches any digit or lowercase letter

 [a-zA-Z0-9_] matches any letter, digit, underscore

 [^0123456789] matches any single non-digit

 [^0-9] same as above

 [^aeiouAEIOU] matches any single non-vowel

 [^\^] matches any single character except ^

Named Character Classes

 Commonly used character classes can be referred to by

name:

PredefinedGroup Negated Negated Group

\d (a digit) [0-9] \D (non-digit) [^0-9]

\w (word char)[a-zA-Z0-9_] \W (non-word) [^a-zA-Z0-9_]

\s (space char)[\t\n] \S (non-space) [^ \t\n]

 \d matches any digit

 \w matches any letter, digit, underscore

 \s matches any space, tab, newline

 You can use these predefined groups in other groups:
 [\da-fA-F] match any hexadecimal digit

Anchors

 Anchors are used to match beginning or end of the line
(or both)

 ^ means beginning of the line

 $ means end of the line

 Example: regular expression

 String: beat a brat on the boat

 Example: regular expression

 String: beat a brat on the boat

^ b [eor] a t

b [eor] a t $

Repetition

 The * is used to define zero or more occurrences of the single

regular expression preceding it

 Example: regular expression

 String: I got a mail, yaaaaaaaaaaaay!

 Example: regular expression

 String: For me to poop on.

y a * y

o a * o

Repetition Ranges

 Ranges can also be specified

 { } notation can specify a range of repetitions for the immediately

preceding regex

 {n} means exactly n occurrences

 {n,} means at least n occurrences

 {n,m} means at least n occurrences but no more than m occurrences

 Example

 x{5,10} five to ten x’s x{5,} five or more x’s

 x{5} exactly five x’s x{0,5} up to five x’s

 c.{5}d c followed by any 5 characters (which can be different) and

ending with d

 * same as {0,}

Subexpressions

 If you want to group part of an expression so that * or { }

applies to more than just the previous character, use ()

notation

 Subexpresssion is treated like a single character

 Example:

 a* matches 0 or more occurrences of a

 abc* matches ab, abc, abcc, abccc, …

 (abc)* matches abc, abcabc, abcabcabc, …

 (abc){2,3} matches abcabc or abcabcabc

Escaping Special Characters

 Even though we are single quoting our regexs so the shell

won’t interpret the special characters, some characters

are special to grep (eg * and .)

 To get literal characters, we escape the character with a \

(backslash)

 Example: search 'a*b*'

 Unless we do something special, this will match zero or more

‘a’s followed by zero or more ‘b’s, not what we want

 ‘a*b*’ will fix this

Protecting Regex Metacharacters

 Since many of the special characters used in regexs also

have special meaning to the shell, it’s a good idea to get in

the habit of single quoting your regexs

 This will protect special characters from being operated

on by the shell

 Single quote ‘’: take the string as is

grep

 grep comes from the ed (Unix text editor) search

command “global regular expression print”

 This was such a useful command that it was written as a

standalone utility

 grep is the answer to the moments where you know you

want the file that contains a specific phrase but you can’t

remember its name

grep, fgrep, egrep

 grep uses regular expressions for pattern matching

 fgrep file grep, does not use regular expressions, only

matches fixed strings but can get search strings from a file

 egrep extended grep, uses a more powerful set of

regular expressions but does not support backreferencing

 Acronym: extended global regular expressions print

 egrep = grep –E (extended regular expressions, which

treats +, ?, |, (, and) as meta-characters

egrep: Multipliers

 Multipliers allows you to say “one or more of these” or

“up to four of these”

 * zero or more of the immediately previous character (or

character group).

 + one or more of the immediately previous character (or

character group).

 ? means zero or one of the immediately previous character

(or character group).

 *, +, and ? are greedy, and will match as many characters

as possible

Metacharacters and Repetition
Quantifiers: specify how many instances of a character, group, or

character class must be present in the input for a match to be found.

egrep: Alteration

 Alternation character | for matching one or more

subexpression

 (b|c)at matches ‘bat’ or ‘cat’

 ^(From|Subject): matches the From and Subject lines of a typical

email message

 For single character alternatives, [abc]is the same as

(a|b|c)

 Subexpressions are used to limit the scope of the alternation

 At(ten|nine)tion matches “Attention” or “Atninetion”, not

“Atten” or “ninetion” as would happen without the parenthesis -

Atten|ninetion

grep: Pattern Memory

 How would we match a pattern that starts and ends with

the same letter or word

 For this, we need to remember the pattern.

 Use () around any pattern to put that part of the string

into memory (it has no effect on the pattern itself)

 To recall memory, you can backreference using backslash

with an integer

 \n is the backreference specifier, where n is a number

 Looks for nth subexpression

Pattern Memory Example
 Bill(.)Gates\1

Matches a string starting with Bill, followed by any single non-newline character,

followed by Gates, followed by that same single character.

matches: Bill!Gates! Bill-Gates-

does not match: Bill?Gates! Bill-Gates_

note that Bill.Gates. would match all four

 a(.)b(.)c\2d\1

matches a string starting with a, a character (#1), followed by b, another single

character (#2), c, the character #2, d, and the character #1.

matches: a-b!c!d-.

 a(.*)b\1c

matches an a, followed by any number of characters (even zero), followed by b,

followed by the same sequence of characters, followed by c.

matches: aBillbBillc and abc

does not match aBillbBillGatesc.

Practical Regex Examples

 Variable names in C

 [a-zA-Z_][a-zA-Z_0-9]*

 Dollar amount with optional cents

 \$[0-9]+(\.[0-9][0-9])?

 Time of day

 (1[012]|[1-9]):[0-5][0-9] (am|pm)

 HTML headers <h1> <H1> <h2> …

 <[hH][1-4]>

More

Examples

 What happens with the pattern: a|b*

 Is this (a|b)* or a|(b*)

 Precedence of patterns from highest to lowest

Name Representation

Parentheses ()

Multipliers ? + * {m,n}

Sequence & anchoring abc ^ $

Alternation |

 Use parentheses

 If want the other interpretation

 in ambiguous cases to improve clarity, even if not strictly needed

 When you use parentheses for precedence, they also go into memory
(\1, \2, \3)

Precedence

Precedence Examples
abc* # matches ab, abc, abcc, abccc,…

(abc)* # matches "", abc, abcabc, abcabcabc,…

^a|b # matches a at beginning of line, or b

anywhere

^(a|b) # matches either a or b at the beginning of

line

a|bc|d # a, or bc, or d

(a|b)(c|d) # ac, ad, bc, or bd

Fun with Dictionary

 /usr/share/dict/words contains about 48,000

words (in CSE lab 2 machine)
 grep '^.a...x.$’ /usr/share/dict/words

 grep ‘^\(.*\)\1$’ /usr/share/dict/words

 egrep as a simple spelling checker, specify plausible

alternatives you know

 egrep ‘n(ie|ei)ther’ /usr/share/dict/words

 How many words have 3 a’s one letter apart?
 egrep ‘a.a.a’ /usr/share/dict/words | wc –l

 Palindrome?

 Find out all 4-letter palindromes

 How about 5-letter palindromes

cachexy

carboxy

martext

panmixy

Quick Quiz
 What does this match? ^[\t]+

 How to match a floating point number? Integers or floating point number without

integer part should be matched too. (+3.14159, 2, .618, -1.5)

 Is this correct [-+]?[0-9]*\.?[0-9]*

 [-+]?([0-9]*\.[0-9]+|[0-9]+)

 [-+]?[0-9]*\.?[0-9]+

 ^[-+]?[0-9]*\.?[0-9]+$

