
Unix File, Security and Link

COMP 2021
Unix and Script Programming

Tools: Archiving & Zipping

 Compress

 Tar the directory Packages to create a file

NewPackages.tar ; c=create, v=verbose, f=file

 tar cvf NewPackages.tar Packages

 Zip up NewPackage.tar to reduce its size, this will create

the file NewPackages.tar.gz

 gzip NewPackages.tar

 Decompress

 gunzip NewPackages.tar.gz

 Tar xvf NewPackages.tar

 x=extract, v=verbose, f=file

File System

 What is a file system?

 A means of organizing information on the computer.

 A file system is a logical view, not necessarily a physical view.

 What does the file system provide:

 Ways to create, move, and remove files

 Ways to order files

 Security

 Examples of file systems:

 Windows: DOS,FAT (File Allocation Table), NTFS (New

Technology File System)

 MacOS: HFS+ (Hierarchical File System)

 Unix, BSD, Solaris: UFS (Unix File System)

Unix File System

 Hierarchical Organization

Recap: UNIX File Utilities

 ls list directory contents

 cd change directory

 pwd print working directory

 cat display file

 more display one screen of file

 rm remove (delete) a file

 rmdir remove (delete) directory

 cp copy source file to target file

 mv rename or move a file

File? Device?

 In UNIX a file is a sequence of bytes of data that reside in

semi permanent form on some stable medium.

 This file can contains anything you can represent as a

stream of bytes.

 A network interface, a disk drive, a keyboard, and a printer

 All input and output devices are treated as files in UNIX.

 Described under file types and file system structure.

File Name and Extension
 File names are limited to 14 chars in system V and 255 chars in BSD.

 To avoid any problem use only letters, numbers, period and underscore.

 Extensions (usually) have no meaning to UNIX, they are parts of files
names, used by users to mark their files types.
 common files extensions:

.c c source code.

.C, .cc c++ source code

.o object file

.ps PostScript format document

.gz gzip compressed file

.tar Tape archive, used by tar command

.dat Data or other information

.pl Perl Program

.bak Backup cope of file

.asc ASCII (text) file, often containing ANSI codes

Types of Files in Unix

 Simple/ordinary file

 Store info and data on secondary storage device, typically a

disk.

 It can contain a source program, an executable program such

as compilers, DB tools, pictures, audio, graphics, and so on.

 Unix does not treat any kind of these files differently from

others. For example a C++ file is no different to UNIX than an

HTML file, however the files are treated differently by C++

compiler and WEB browser.

 Directory files

 Store (inode, filename) for each file or subdirectory it contains.

Unix Inode

 A Unix file is "stored" in two different parts of the disk -

the data blocks and the inode.

 Data blocks: contents of the file

 inode: information about the file

 Every file has a unique inode

 An inode contains the metadata for UNIX files, necessary

for a process to access a file

 Exist in a static form on disk

 Kernel reads them in to an in-core inode to manipulate

them

Contents of Disk Inodes

 File owner identifier (individual/group owner)

 File type (regular, directory,..)

 File access permission (owner,group,other)

 File access time

 Number of links to the file (chap5)

 Table of contents for the disk address of data in a file
(byte stream vs discontiguous disk blocks)

 File size

* Inode does not specify the path name that access the
file

Inode Structure
Sample Inode:

Owner cindy

Group comp2021

Type regular file

Perms rwxr-xr-x

Accessed Oct 23 2015 1:45 P.M

Modified Oct 22 2015 10:3 A.M

Inode Oct 23 2015 1:30 P.M

Size 6030 bytes

Disk addresses

Direct and Indirect Blocks in Inode

direct0

direct1

direct2

direct3

direct4

direct5

direct6

direct7

direct8

direct9

single indirect

double indirect

triple indirect

Inode Data Blocks

Byte Capacity of a File

 System V UNIX. Assume that

 Run with 13 entries

 1 logical block : 1K bytes

 Block number address : a 32 bit (4byte) integer

 1 block can hold up to 256 block number (1024byte / 4byte)

 10 direct blocks with 1K bytes each=10K bytes

 1 indirect block with 256 direct blocks= 1K*256=256K bytes

 1 double indirect block with 256 indirect blocks=256K*256=64M bytes

 1 triple indirect block with 256 double indirect blocks=64M*256=16G

 Size of a file : 4G (232), if file size field in inode is 32bits

Directory

 A directory is a file

 Its data is a sequence of entries, each consisting of an

inode number and the name of a file contained in the

directory

 Example:

Unix File System (revisit)

 File system contains a linear list of inodes

 Inode is free if its type field is zero (0), can be assigned to a

new file

 Super block
 the size of the file system

 the number of free blocks in the file system

 a list of free blocks available on the file system

 the index of the next free block in the free block list

 the size of the inode list

 the number of free inodes in the file system

 a list of free inodes in the file system

 the index of the next free inode in the free inode list

 lock fields for the free block and free inode lists

 a flag indicating that the super block has been modified

boot block super block inode list data blocks

Other Types of Files in Unix

 Pipe

 First-in-first –out (FIFO)

 Its data is transient: once data is read from a pipe, it cannot

be read again

 Use only direct block (not the indirect block)

 Link files

 Point to the existing file, allowing you to rename an existing file

and share it without duplicating its contents.

 Establish connection between the file to be shared

 ln command links the file to a directory.

Other Types of Files in Unix (cont.)

 Special files (devices)

 A mean of accessing hardware device, including the keyboard,

hard disk, CD-ROM drive…etc.

 Each hardware device is associated with at least one special file,

and hence an inode number

 Usually reside in the /dev directory.

User and Group

 Unix was designed to allow multiple people to use the

same machine at once

 Security and sharing are important issues to be dealt with

 Access to files depends on the users account

 All accounts are presided over by the Superuser, or “root”

account

 Each use has absolute control over any files he/she owns,

which can only be superseded by root

 Files can also be assigned to groups of users, allowing reading,

modifications and/or execution to be restricted to a subset of

users

File Ownership

 Each file is assigned to a single user and a single group

(usually written user : group)

 cindy’s file belongs to cindy : cs, and roots files belong to
root : root

 Needs root privilege to change file ownership – a regular user can’t

take ownership of their files to another user or a group they don’t

belong to

Class Exercises

Find out who you are (login name) and which groups do you

belong to?
whoami groups

Discovering Permissions

 Use ls -l to tell about ownership and permissions of

files

 ls – l lists files and directories in the long format

 Can use ls -ld to lists a directory’s information

Example

-rw------- 1 lixin cs 1355 Feb 1 21:32 2021StuList

Question: What permission is allowed?

-rw-r--r-- 1 lixin cs 1355 Feb 1 21:32 2021OpenList

Security and Access Permissions

 There are three types of users:

 The owner of the file (user)

 The group of the file (group)

 Anyone else (other)

 There are three types of permission

(independent of each other):

 Read permission

 Write permission

 Execute permission

Crack the Format
-rw-r--r-- 1 cindy cs 154 Feb 4 15:00 2021OpenList

 There are four sets of items in the permissions:

-rwxrwxrwx

 The type is:

“-” regular files, “d” directories , “l” symbolic links.

 The next nine characters indicate if the file is readable, writable,
or executable for the file owner, the file group, or other users,
respectively.

Permissions User Group
Byte size

Last modification
Name

#links

user group other
type

Changing Permissions

Change Mode

chmod [ugoa] [+-=] [rwx] [file/dir]

• Changes file/directory permissions

• Optionally, one of the characters: u (user/owner), g (group), o (other), or a (all).

• Optionally, one of the characters: + (add permission), - (remove permission), or =

(set permission).
• Any combination of the characters r (read), w (write), or x (execute).

Permission Example
 To let everybody read or write the file

$ chmod a+rw file

$ ls -l file

-rw-rw-rw- 1 cindy cs 154 Feb 4 15:00 file

 To allow user to execute file
$ chmod u+x file

$ ls -l file

-rwxrw-rw- 1 cindy cs 154 Feb 4 15:00 file*

 To not let “other” to read or write file file
$ chmod o-rw file

$ ls -l file

-rwxrw---- 1 cindy cs 154 Feb 4 15:00 file*

 To let “group” only read the file file
$ chmod g=r file

$ ls -l file

-rwxr----- 1 cindy cs 154 Feb 4 15:00 file*

Permission Shortcut

 Think of r, w, and x as binary variables

 1 ON, 0 OFF

Decimal Permission

chmod 755: rwxr-xr-x

chmod 600: rw-------

chmod 777: rwxrwxrwx

Permission Example

Note: CSE homepage is not available for UG students

You may setup your personal homepage under ITSC ihome service

http://itsc.ust.hk/services/general-it-services/communication-collaboration/ihome/

Directory Permissions

 Read determines if a user can view directory’s contents
 i.e. do ls in it.

 Write determines if a user can create new files or
delete file in the directory
 Note a user with write access to a directory can delete

files in the directory even if he doesn’t have write
permission to the file

 Execute determines if the user can cd into the
directory
 You can use the directory name when accessing files

inside it

 you can do ls and cp on individual files in the
directory.

Directory Permissions
$ ls -ld secret*

drwxr-xr-x 2 cindy cs 512 Feb 4 16:38 secret/

d--------- 2 cindy cs 512 Feb 4 16:39 secret1/

dr--r--r-- 2 cindy cs 512 Feb 4 16:39 secret2/

d--x--x--x 2 cindy cs 512 Feb 4 16:38 secret3/

$ ls -l secret*

secret:

total 2

-rw-r--r-- 1 cindy cs 1054 Feb 4 16:38 letter1

secret1 unreadable

ls: secret2/letter1: Permission denied

secret2:

total 0

secret3 unreadable

Brian Storming

 Real-life Example: What if you want your friend to get a file and
no one else ?

 Hint: with the trick of permission

Links

 A link is a directory entry that points to blocks on disk.

 In other words, every file on your system has at least one link

 In fact, in UNIX all filenames are just links to a file. Most
files only have one link.
-rw------- 1 lixin cs 4 Feb 7 11:57 original1

-rw------- 1 lixin cs 4 Feb 7 11:57 original2

 Additional links to a file allow the file to be shared.

 The ln command creates new links.
$ ln original1 original1-hard

$ ls -l

total 12

-rw------- 2 lixin cs 4 Feb 7 11:57 original1

-rw------- 2 lixin cs 4 Feb 7 11:57 original1-hard

-rw------- 1 lixin cs 4 Feb 7 11:57 original2

Number of links

Hard Link

 More than one filename can reference the same inode

number; these files are said to be ‘hard linked’ together

$ ls -li

total 12

1744963559 -rw------- 2 lixin cs 4 Feb 7 11:57 original1

1744963559 -rw------- 2 lixin cs 4 Feb 7 11:57 original1-hard

1765251893 -rw------- 1 lixin cs 4 Feb 7 11:57 original2

inode number

ln command

 ln make links between files

 ln creates hard link by default

 The last argument is the link destination, and can be:
 A pathname of a new regular file

$ ln original1 original1-hard

 A pathname of an existing directory (a link with the same basename as
the original file is created in the directory)

$ ln original1 subdir

The ln command

• ln [option] TARGET LINK_NAME

Create a link to TARGET with the name LINK_NAME

• ln [option] TARGET DIRECTORY

Create a link to TARGET in DIRECTORY

Soft Link

 There’s a special file type whose data part carries a path to another file

(a file that contains the name of another file)

 OS recognizes the data as a path, and redirects opens/reads/writes

 This special file is called a ‘soft link’, or a ‘symbolic link’ (aka a ‘symlink’)

Soft Link (cont.)

 A soft link is a pointer to a pathname, not a pointer to
the file itself.
 ln -s TARGET LINK_NAME creates a soft link.

 The symbolic link has a different inode.
$ ln -s original2 original2-soft

$ ls -li

total 12

1744963559 -rw------- 2 lixin cs 4 Feb 7 11:57 original1

1744963559 -rw------- 2 lixin cs 4 Feb 7 11:57 original1-hard

1765251893 -rw------- 1 lixin cs 4 Feb 7 11:57 original2

1770683694 lrwxrwxrwx 1 lixin cs 9 Feb 7 12:55 original2-soft -
> original2

Hard vs. Soft Links

When you rm a file the actual system call is unlink.

It removes the directory entry.

Hard vs. Soft Links (Cont.)

 The most important difference between hard and soft

links occur when a link is removed.

 When deleting files, the data part isn't disposed of until all

the filename parts have been deleted.

 inode keeps how many filenames point to this file

 Count is decremented by 1 each time one of those filenames is

deleted

 When the count makes it to zero, the inode and its associated

data are deleted.

Hard vs. Soft Links (Cont.)

 You can’t make a hard link to a directory, but you can make a
symbolic link to a directory.
$ mkdir subdir

$ cd subdir

$ touch original3

$ cd ..

$ ln subdir subdir-hard

ln: `subdir': hard link not allowed for directory

$ ln -s subdir subdir-soft

$ cd subdir-soft

$ ls

original3

 You can also make symbolic links across file systems.
$ ln /usr/include/stdio.h stdio.h

ln: creating hard link `stdio.h' to `/usr/include/stdio.h': Invalid
cross-device link

$ ln -s /usr/include/stdio.h stdio.h

$ ls -li

317906316 lrwxrwxrwx 1 lixin cs 20 Feb 17 14:10 stdio.h ->
/usr/include/stdio.h

 There is no way to tell how many symbolic links there are to a file

 The permission is not correctly reflected using –l option for soft links, use –L

instead

