
PHP

Cookies and Sessions

COMP 2021
Unix and Script Programming

HTTP - a ‘Stateless’ Environment

stateless
(adj.) Having no information about what occurred previously.

 HTTP is stateless – it does not keep track of the client
between requests

 When you browse the web, you are not always connected to the

server

 Once the request has been processed and returned from the server,

the connection is closed

 Connection needs to be re-opened when you need new information

or refresh

Cookies and Sessions

 But sometimes we need to keep track of information, or have
persistent data

 Shopping cart

 “Remember me” on login sites

 PHP sessions and cookies are mechanisms for introducing
state into HTTP transactions.

 Cookies – small file stored client-side

 Sessions – relevant data stored on the server

HTTP
serverClient

Cookie
Session

Is PHP Stateless?

 Variables are destroyed as soon as the page script

finishes executing.

 The script can access the ‘referrer’, the address of the

previous page, although this can’t really be trusted.

$_SERVER['HTTP_REFERER']

 It is possible to add data to a database/text file to add

persistent data, although this is not connected with a

particular user…

Cookies

What is a Cookie?

 HTTP cookies are data which a server-side script sends

to a web client to keep for a period of time.

 a small text file that is stored on a user’s computer

 On every subsequent HTTP request, the web client

automatically sends the cookies back to server (unless

the cookie support is turned off).

 The cookies are embedded in the HTTP header (and

therefore not visible to the users).

How do HTTP Cookies work?

Cookies are transferred between server and client according to

HTTP

1. User sends a HTTP request for page for the first time.

2. Server sends back the HTTP response (e.g. HTML webpage) to

the browser AND stores some data in a cookie on the user’s PC.

3. At the next page request, all cookie data associated with this

domain is sent too.

Cookie Fact

 Cookies are sent from the server to the client via “Set-

Cookie” headers
 Set-Cookie: NAME=VALUE; expires=DATE; path=PATH;

domain=DOMAIN_NAME; secure

 Each cookie on the user’s computer is connected to a

particular domain.

 Each cookie be used to store up to 4kB of data.

 A maximum number of cookies can be stored on a user’s

PC per domain is browser dependent

 Usually a few tens

 Cookies can be created with JavaScript

or PHP

The USER is in Control

 Cookies are stored client-side

 Cookie is stored (or persistent) only if there is an expiry date

 Otherwise it is deleted when leaving browser

 They can be turned on and off at will by the user

 Never trust them completely: they can be easily viewed,

modified or created by a 3rd party

 Exact location depends on browser, e.g. IE cookies

Example: Default IE Cookie Setting

Create PHP Cookies

 Directly manipulating the HTTP header using the PHP

header()function

 Use the PHP setcookie()function

 setcookie (name,value,expire, path,

domain, secure)

<?php

header(“Set-Cookie: mycookie=myvalue; path=/; domain=.example.com”);

To make the cookie available on all subdomains of example.com, you'd

set it to '.example.com'.

?>

PHP

<?php

setcookie("MyCookie", $value, time()+3600*24);

setcookie("AnotherCookie", $value, time()+3600);

?>

PHP

The setcookie()Function

setcookie(name, value, expire, path, domain)

 Name and value correspond to $_COOKIE[$name] =

$value

 Expiration – cookie will no longer be read after the expiration

 Useful to use time in seconds relative to the present:

 time() + time in seconds until expiration

 Path and domain refer to where on the site the cookie is

valid

 Usually ‘/’ for path and the top-level domain

(yoursitename.com)

 To delete a cookie, set a new cookie with same

arguments but expiration in the past

Access PHP Cookies

 The $_COOKIE superglobal array makes a cookie a key-

value pairing

 Refer to $_COOKIE to retrieve a cookie

 Check with isset($_COOKIE[$cookie_name])

before trying to use the cookie’s value

 Cookies can only be set before any output is sent (e.g.

echo, print) and before <html><head>.

 Cookies only become visible on the next page load

Example: Set and Access Cookie
<?php

createCookie.php Create and access a cookie

$cookie_name = "user";

$cookie_value = "John Doe";

setcookie($cookie_name, $cookie_value, time() + (86400 * 30), "/");

?>

<html><body>

<?php

if(!isset($_COOKIE[$cookie_name])) {

echo "Cookie named '" . $cookie_name . "' is not set!";}

else {

echo "Cookie '" . $cookie_name . "' is set!
";

echo "Value is: " . $_COOKIE[$cookie_name];}

?>

</body></html> PHP

86400 = 1 dayBefore <html><body> and output

1st run 2nd run

Example: Cookie with Multiple Items
<?php

multipleItemCookie.php

set a cookie with 4 pieces of data

$strAddress = $_SERVER["REMOTE_ADDR"];

$strBrowser = $_SERVER["HTTP_USER_AGENT"];

$strServerName = $_SERVER["SERVER_NAME"];

$strInfo = "$strAddress::$strBrowser::$strServerName";

setcookie ("cookie4",$strInfo, time()+7200);

?>

<?php

use explode() to retrieve the 4 pieces of data

$strReadCookie = $_COOKIE["cookie4"];

$arrListOfStrings = explode ("::", $strReadCookie);

echo "<p>$strInfo</p>";;

echo "<p>Your IP address is: $arrListOfStrings[1] </p>";

echo "<p>Client Browser is: $arrListOfStrings[2] </p>";

echo "<p>Server name is: $arrListOfStrings[3] </p>";

?>

PHP

Wrap-up Example: greeting.php

 First visit: form with a text field for user’s name

 Subsequent visits: Welcome message with the name

 Store the name field in a cookie:

 Key: “name”; value: the user’s name input into the form

 Remember: when a cookie is set (the setcookie() function call

is made), the cookie can only be accessed on the next request

1st run 5th run

Contents of HTTP Request and Response

Case 1: Cookies Already Set

case 1: cookies already set

if(isset($_COOKIE["name"])) {

$cookie_exp = time()+60*60; // one hour

$name = $_COOKIE["name"];

setcookie("name", $name, $cookie_exp);

if (isset($_COOKIE["visits"])) { $num_visits =

$_COOKIE["visits"]+1;

setcookie("visits", $num_visits, $cookie_exp);

}

echo "Welcome $name! ";

if (isset($_COOKIE["visits"])) {

echo "You've visited $num_visits times"; }

} PHP

Case 2&3: First and Second Visits

case 2: upon submission of form

else if (isset($_GET["name"])) {

$name = $_GET["name"];

setcookie("name", $name, $cookie_exp);

setcookie("visits", 2, $cookie_exp);

echo "Welcome $name! This is your second visit.";

}

case 3: first visit: need to show form

else {

HereDoc

Complex data types in strings must be surrounded by {} for

them to be parsed as variables

$form = <<< FORM

<form action="{$_SERVER["PHP_SELF"]}" method="get">

Enter your name here: <input type="text" name="name" />

<input type="submit" />

</form>

FORM;

echo $form; PHP

Sessions

Cookies vs. Sessions

 Two main disadvantages of cookies

 Limited in size by browser

 Stored client-side can be tampered with

 Sessions store user data on the server-side

 Limited only by server space

 Cannot be modified by users

 A potential downside to sessions is that they expire when

the browser is closed

A session is a semi-permanent interactive information

interchange, between two or more communicating devices

How Session Works?

 The first time a web client visits a server, the server sends a
unique "session ID" to the web client for the client to keep.
 Session ID is typically stored in the cookies.

 The session ID is used by the server to identify the client.

 For each session ID created, the server also creates a storage
space. Server-side scripts that receive the same session ID
share the same storage space.
 The storage space is typically implemented as a map-liked data structure.

 In PHP, it is an associative array named $_SESSION[].

 A session's "storage space" is only kept alive for a period of
time (session period) or until it is explicitly deleted.

Example

Crucially, sessions are easy to implement as PHP does all
the work!

When should you use sessions?

 Need for data to stored on the server

 Unique session information for each user

 Transient data, only relevant for short time

 More secure, once established, no data is sent back and

forth between the machines

 Works even if cookies are disabled

PHP Session Start/Resume

 You must start up the session before using it

 Call session_start() at top of every page before

<html> tag

 This tells PHP that a session is requested.

<?php

session_start();

?>

<html>

<body>

</body>

</html> PHP

PHP Session Start/Resume (cont.)

 PHP looks for a valid session ID in the $_COOKIE or

$_GET superglobals

 If found

 Initializes the data

 If not found

 Create new session ID at the server end

 Session ID looks 26fe536a534d3c7cde4297abb45e275a to

make it unique

PHP Session Access

 Access data using the $_SESSION superglobal, just like

$_COOKIE, $_GET, or $_POST

<?php

#visitCountSession.php

session_start();

if (isset($_SESSION["count"])) {

$_SESSION["count"] += 1;

echo "You have visited here {$_SESSION["count"]} times";

}

else {

$_SESSION["count"] = 1;

echo "You have visited once";

}

?> PHP

PHP Session Propagation

 Sessions need to pass the session id between pages as a

user browses to track the session.

 It can do this in two ways:

 Cookie propagation

 URL propagation

 The default setup of a PHP server is to use both

methods.

 it checks whether the user has cookies enabled.

 If cookies are on, PHP uses cookie propagation. If cookies are

off it uses URL propagation.

Cookie Propagation

 A cookie is stored on the users PC containing the

session id.

 It is read in whenever session_start(); is

called to initialize the session.

 Default behaviour is a cookie that expires when the

browser is closed. Cookie properties can be modified
with session_set_cookie_params if

required.

URL Propagation

 The session id is propagated in the URL

 e.g.

…some_folder/index.php?sid=26fe536a534d3c7cde

4297abb45e275a

 PHP provides a global constant to append the session id
to any internal links, SID.

 e.g.

<a href="nextpage.php?<?=SID?>">Next page

Session Expiry

 By default, PHP sessions expire:

 after a certain length of inactivity (default 1440s), the PHP

garbage collection processes deletes session variables.

 Important as most sessions will not be explicitly destroyed.

 if propagated by cookies, default is to set a cookie that is

destroyed when the browser is closed.

 If URL propagated, session id is lost as soon as navigate away

from the site.

unset() and session_destroy()

 Remove an individual element of the $_SESSION

superglobal

 unset($_SESSION[‘key_name’])

 The session still exists and can be modified

 Destroy the entire session, remove all data

 session_destroy()

 Destroys all data registered to a session

 Does not unset session global variables and cookies associated

with the session

 Need to call session_start() to start a new session

 Not normally done - leave to timeout

Example: Destroying a Session

 A more complete example at

 http://php.net/manual/en/function.session-destroy.php

<?php

#destroy session

session_start();

?>

<html>

<body>

<?php

// remove all session variables

session_unset();

// destroy the session

session_destroy();

?>

</body>

</html> PHP

Wrap-up Example: User Login

 loginForm.php

 Create a form to input user name and password

 login.php

 Validate user name and password

 content.php

 If logged in, show content page

 Logout.html

 Webpage for logout

 Logout.php

 Delete session

Recap: a Comparison

COOKIES SESSIONS

Where is data stored Locally on client Remotely on server

Expiration? Variable – determined

when cookie is set

Session is destroyed

when the browser is

closed

Size limit? Depends on browser Depends only on server

(practically no size limit)

Accessing information $_COOKIE $_SESSION

General use? Remember small things

about user, such as login

name. Remember things

after re-opening

browser

Remember varying

amount of data about

the user in one

browsing “session”

