
COMP 4021
Internet Computing

David Rossiter

AJAX



‘Traditional’ Communication

 You already know that the most common way to give 
information to a server is by using a form

 In response to the form request, the server sends back a 
complete web page to the browser

 With this method, the transaction (request – respond) 
happens ‘once only’

 This is the ‘traditional’ style of “updating” a web page in Web 
1.0

COMP303 AJAX Page 2



‘Traditional’ Operation

(I.e. Internet

Explorer)

Server
1. Client sends 

request i.e. 

GET index.html

2. Server sends 

new web page

or maybe redirects 

the browser to a 

web page

Client

3. New web page is 

shown in the browser



Updating an Entire Web Page

 To periodically update information on a web page 
automatically, you can do either of these:
 Method 1: Refresh the web page (or go to another web page) 

using an html ‘meta’ tag

 Method 2: Use JavaScript to tell the browser to reload the web 
page (or go to another web page)

 With both methods, even if only small parts of the page 
need to be updated, the whole thing must be updated

COMP303 AJAX Page 4



Method 1 – Using a Meta Tag

 The HTML refresh meta tag can be used to redirect a web page 
after a certain time interval

<META http-equiv="refresh" content="<time>;URL=<url>" />

 For example the following tag redirects the browser to the 303 
main page 10 seconds after loading

<META http-equiv="refresh"
content="10;URL=http://course.cse.ust.hk/comp303" />

 If the URL field is empty the page will refresh itself after the 
specified time value, e.g.

<META http-equiv="refresh" content="5" />

Refresh the same page after 5 seconds



Method 2 – Using JavaScript

 You can use JavaScript to refresh the page content

 The following example refreshes a web page after 5 seconds

COMP303 AJAX Page 6

<html>
<body onload=
"setTimeout('window.location.reload()', 5000)">
Hello, I will be reloaded in 5 seconds.
</body>
</html>

Get the URL of current page



AJAX

 Ajax uses a different style of communication to the ‘load a 
complete page’ style

 Ajax =Asynchronous JavaScript and XML

 It is a method for code in a web page to send a request to 
the server any time it wants to, without ‘leaving’ the 
current web page

 This is called ‘asynchronous communication’

 Typically a small message is sent back from the server to 
the browser (not a complete web page)

COMP303 AJAX Page 7



Example Use of Ajax - Google

 Example - interactive entering of search terms:
http://www.google.com

 As soon as you enter a letter in the google search field, all the 
letters entered by the user so far are sent to the Google 
server

 Google immediately responds with a list of the most popular 
search terms that start with those letters  (user can then use 
arrow keys to select one)

COMP303 AJAX Page 8





COMP303 AJAX Page 10

Speed Advantages of AJAX

 The request sent to the server is small (i.e. <150 bytes) and 
the response from the server is small (maybe <200 bytes)
 Only data for the updated parts of a page (e.g., DIVs) need to be 

fetched from server

 So these small sizes mean quick communication

 Another point is that usually when the data is received the 
JavaScript code only updates a small part of the web page, 
not the entire display

 This is much quicker than updating the entire web page 
display, which is the ‘traditional’ style



Ajax/Traditional Comparison

 The next slide shows a comparison between the ‘traditional’ 
method (left) and the Ajax method (right)

 Some things in the figure are slightly misleading i.e.
 Both methods don’t have to use a CSS file

 Don’t have to send XML data for the Ajax method, even simple text 
could be sent

 Anything could be on the server, i.e. server may or may not have a 
database

COMP303 AJAX Page 11



json or 
plain 
text

Supports 
Xmlhttpre
quest 
object



Client Side Programming for Ajax

 Create an XMLHttpRequest object

 Send the request to the server
 open() to initialize connection to the server

 send() to send the data

 A client side event listener knows when the XMLHttpRequest 
object has finished retrieving data, and runs a callback 
function

 The callback function
 Checks whether the data is successfully retrieved

 Does something appropriate with the data

Why a callback function is needed?



function getUpdate() {
request = new XMLHttpRequest();
request.onreadystatechange = stateChange; // see below
request.open("POST", "server.php", true);
request.send( null );

}

function stateChange() {    // Callback function
// This function is run when the server responds
if (request.readyState == 4 && request.status == 200 

&& request.responseText) {
// suppose myDiv has been defined in html body
document.getElementById("myDiv").innerHTML=            

request.responseText;
}

}

Specifies the type 

of request; last para 

is: async (true) or 

sync (false)

 ‘4’ means a reply 

has been received 

from the server

 ‘200’ means the 

reply was normal

 The third test is to 

check some actual 

data was returned 

by the server.

Basic Ajax Code

Server program to 

receive Ajax requests

• Here the request sent to the server 

doesn’t pass any parameter

No parameters are passed 

to the server program

We only need to run getUpdate() once. After that, whenever a response is 

received from server.php, stateChange() will be automatically executed.



Getting XML Data from Server

 In PHP project, the client uses AJAX to get XML data from the server

 A request is sent to the server; XML data is sent back

 When we send the request, we send the last known size of the XML data, so 
the server can compare it to the current size, and send all the XML chat room 
data if the size is not the same

<script type=“text/javascript”>

XMLHttpRequest

function stateChange() {

// Update the chat area

}

</script >

chatroom.xml

server.php

1

2

3
4

5

Send request

Get the data 

from the 

XML file

Return XML data

<messages>
<message name=“Bob”>Hello</message>
. . .

</messages>

Client Server

Loop
Run the 

callback 

function



PHP Project Code

 In the previous example code, we only needed to send the 
request once (in getUpdate())

 After that, whenever a response is received from server.php, 
stateChange() will be automatically executed

 For the PHP project, the situation is a bit different, because 
each time we need to tell the server the size of the chat room 
XML in the client

 So that means we have to repeatedly send the request

COMP303 AJAX Page 16



var datasize = 0;   

function getUpdate() {
request = new XMLHttpRequest();
request.onreadystatechange = stateChange;
request.open("POST", "server.php", true);
request.setRequestHeader("Content-type", 

"application/x-www-form-urlencoded");
request.send("datasize=" + datasize);   }

function stateChange() {    // Callback function
// This function is run when data is returned
if (request.readyState == 4 && request.status == 200 

&& request.responseText) {
document.getElementById("myDiv").innerHTML= 

request.responseText;
datasize = request.responseText.length;
. . .     // XML received, update the chat display
getUpdate();

}    }
Repeat the whole procedure again

The size of the XML data in the client is 0 
when the chat room client side code starts

Send the size of the XML file in the 
client to the server
server.php compares this value 
with the size of the current XML file 
to check if the client has the latest 
XML data, and send it if required

Update the current 
size of the XML data 
for sending later

POST data in HTML form



Take Home Message

 Ajax has become a standard technology for modern websites

 Web 2.0 enables instantaneous interaction between 
user/system and user/user

 Data transfer from the server does not have to be XML; any 
format that the client can interpret is fine

COMP303 AJAX Page 18


