
COMP 4021

Internet Computing

PHP Sessions

David Rossiter

What is a ‘Session’?
 HTTP is a stateless protocol - each request/response is

self-contained, there is no ‘memory’ from one access to
another

 If there is no state then the browser has to send
authentication information (i.e. name and password)
every single time the user accesses a page on that web
site

 For example, this is what happens every time you access a
page on the COMP4021 web site

 Using a state is crucial for many Web applications

COMP303 PHP Sessions Page 2

Using Cookies

 Traditionally, one way to create a kind of state is to use
cookies

 However, a user may block cookies on their computer

 Alternatively, perhaps a browser is being used which
does not support cookies (i.e. a browser with high
security settings, some mobile phone browsers)

COMP303 PHP Sessions Page 3

Example Security Settings (IE)

. . .

COMP303 PHP Sessions Page 4

High ‘privacy’ – all cookies blocked Low ‘privacy’ - all cookies accepted

Session IDs

 PHP (and other server side languages) can use sessions that
make states easy to handle so that you can successfully
preserve and use variables among web pages

 Every session will have a unique id, although this is invisible
to the code

 Session ids are stored on the server

 To activate a session, include session_start();
at the beginning of your script, before PHP has done any
printing

COMP303 PHP Sessions Page 5

Registering a Session Variable

 This code transfers session ID using cookies

 If cookies don’t work, then this code doesn’t work

<?php
 session_start();

 if (!isset($_SESSION['count'])) { // If does not exist, create it
 $_SESSION['count'] = 0;
 } else {
 $_SESSION['count']++; // Increment count by one
 }
 echo "You have visited here ".
 $_SESSION['count']." time(s).";
?>

Unregistering a Session Variable

COMP303 PHP Sessions Page 7

<?php
 session_start();

 // Dump the session variable
 unset($_SESSION['count']) ;
?>

Passing the Session ID

 There are two methods to propagate a session ID
1. Cookies

2. GET method (passed as a URL parameter)

 Cookies are best, but they are not always available

 There is an alternative way which uses the URL

 The session module supports both methods

COMP303 PHP Sessions Page 8

Example Using URL

<?php
 // This will check for both cookie and URL methods
 session_start();

 if (!isset($_SESSION['count'])) {
 header("Location: 03_session_using_url.php?".SID);
 $_SESSION['count'] = 0;
 } else {
 echo "You have visited here ".$_SESSION['count']." time(s)";
 $_SESSION['count']++; }
?>

COMP303 PHP Sessions Page 9

03_session_using_url.php

• This code transfers session ID using the GET method parameter
in the URL

COMP303 PHP Sessions Page 10

• An example of using URL to pass session ID in a website
developed using Java

Using URL to pass Session ID

Example Output using PHP

Tell the browser to re-load the same program again, this time passing the
Session ID to the program so that it can access and manipulate it

Session ID is passed using cookie

Generate Session ID

 If the cookie has no session information, the PHP program will
generate a new session ID

 E.g. you can browse 03_session_using_url.php without
adding the session ID in the URL

 Then the PHP program will tell the browser to reload itself
with the new session ID

COMP303 PHP Sessions Page 12

Take Home Message

 Session is important for security reason (time out a login)

 It is also important for web analytics, e.g., a session can be
treated as a ‘visit’

 PHP provides some handy functions for handling sessions

COMP303 PHP Sessions Page 13

