
The Browser Process /

HTTP

David Rossiter

COMP 4021

Internet Computing

A Browser Uses HTTP

 Here is a simple web page

 Assume this web page is at
http://www.silly.com

 To get the page, you type the URL
in the browser and press Enter

 The browser requests the
web page using HTTP

COMP303 The Browser Process/ HTTP Page 2

IP Address and Ports

 May processes may be running on a server

 They each use a different port (=door)

COMP303 The Browser Process/ HTTP Page 3

Client

Server

Example IP address: 143.89.151.46

Example IP address: 143.89.111.244

22

80

21

httpd

ftpd

sshd

HTTP

SSH

FTP

Example Ports

Protocol Default Port

FTP 21

Telnet 23

HTTP 80 

NNTP (Usenet news) 119

ICQ 5190

Quake game 26000

Half-life game 27010

COMP303 The Browser Process/ HTTP Page 4

Client-Server Communication

 The browser connects to the machine
silly.com using the HTTP protocol

 No port was specified by the user so the
browser assumes port 80

COMP303 The Browser Process/ HTTP Page 5

Client Server

HTTP Protocol

Client’s Request

 The message (called a request) that the browser
sends to the silly.com server at port 80 is:

GET / HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

C
o
u
ld

 s
en

d
 t

h
is

 a
ls

o

You could simply send this line only.

The program is IE, running on Windows XP

Server’s

Response

HTTP/1.1 200 OK

Date: Mon, 1 Nov 2010 09:09:47 HKT

Server: Apache/1.3.6 (Unix) mod_ssl/2.2.8 OpenSSL/0.9.2b

Last-Modified: Mon, 14 Apr 2008 09:39:08 HKT

Accept-Ranges: bytes

Content-Length: 507

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

<!doctype html public "-//w3c//dtd html 4.0 transitional//en">

<html>

<head>

<title>Simple page</title>

</head>

<body>

<h2>Welcome!</h2>

This is just a simple little web page, with:

A silly image

Some unexciting text

And a link

</body>

</html>

The silly.com

server responds

with everything
shown here

R
es

p
o
n
se

 h
ea

d
er

T
h
e

fi
le

 f
o
ll

o
w

s

th
e

h
ea

d
er

Server’s Response - Header

HTTP/1.1 200 OK

Date: Mon, 1 Nov 2010 09:09:47 HKT

Server: Apache/1.3.6 (Unix) mod_ssl/2.2.8 OpenSSL/0.9.2b

Last-Modified: Mon, 14 Apr 2008 09:39:08 HKT

Content-Length: 507

Content-Type: text/html

This line tells the client what version of the HTTP protocol

the server uses and says that the document

has been found and is going to be transmitted.

Current date on the server in Greenwich Mean Time (GMT)

Tells the client what type of software the server is running,

in this case Apache, version 1.3.6, running under Unix

Tells the client the type of the document

Tells the client how many bytes are coming

Tells the client the last time that

the document was modified

Client’s Request

GET /man.gif HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

. . .

A silly image

. . .

The browser sees this in the HTML, and understands that the web

page also needs an image file. So it sends a request for the image:

Server’s Response

HTTP/1.1 200 OK

Date: Mon, 1 Nov 2010 09:09:48 HKT

Server: Apache/1.3.6 (Unix) mod_ssl/2.2.8 OpenSSL/0.9.2b

Last-Modified: Mon, 14 Apr 2008 09:39:12 HKT

Content-Length: 4627

Content-Type: image/gif

v({CCPP P]]]kkkxxx¡¡¡®®®»»»ÉÉÉÖÖÖäääñññÿÿÿÿÿÿS?Ul¶D@âU

nQÿÿ{.(/{Rn;/,ÿÿ H° *\È Ï F(±¡Å3jÜÈ±£Ç 5VD(âÃG

. . .

This is the GIF data (it looks

strange because it is not meant

for viewing as text)

The browser knows that GIF data follows

Summary

Client
Server

HTTP/1.1 200 OK

Content-Length: 507

Content-Type: text/html

. . . [HTML data] . . .

GET /man.gif HTTP/1.1

. . .

HTTP/1.1 200 OK

Content-Length: 4627

Content-Type: image/gif

. . . [GIF data] . . .

GET / HTTP/1.1

. . .

T
im

e

Forms

 When you submit a form the
browser sends the form data
to the server, as well as the
name of the program on the
server which it needs to be
given to

COMP303 The Browser Process/ HTTP Page 12

HTML Source Code<html>

<head>

<title>Movie Database!</title>

</head>

<form method="post"

action="http://ihome.ust.hk/~rossiter/cgi-bin/show_environment.php">

<h1>Movie Search</h1>

Select the name and/or the year of the movie you want to search
for.<p />

Title:<input type="text" name="movie_title" value="" />

Year:<input type="text" name="movie_year" value="" />

Press submit when you're ready

<input type="submit" value="Submit">

</form>

</html>

Sending Form Data
 After the Submit button is pressed, the browser

connects to the server shown in the ‘action’ field,
using port 80

action="http://ihome.ust.hk/~rossiter/cgi-bin/show_environment.php"

 In this case the server is ihome.ust.hk

 The browser then sends:

POST /~rossiter/cgi-bin/show_environment.php

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Content-type: application/x-www-form-urlencoded

Content-length: 35

movie_title=spiderman+3&movie_year=

The browser now includes this line, specifying the

type of data being sent. Previously this wasn’t

necessary, as no content was sent with the request.

35 bytes to follow.

Two parameter pairs separated by a

‘&’, with spaces replaced by ‘+’

Response from Server

 After receiving the client request, the client will
give all the sent information to the server side
program show_environment.php

 The program does whatever it is programmed to
do

 Probably, it outputs something back to the client
- whatever it outputs (i.e. prints) goes straight
back to the browser

COMP303 The Browser Process/ HTTP Page 15

COMP 4021

Internet Computing

Browsers

David Rossiter

Browser File Processing

 Browsers must support:

 HTTP to request pages and respond to server responses

 Rendering of HTML pages

 After the page is retrieved, the browser will have
to do:

 Retrieve linked external files, e.g., CSS files,
JavaScript files, image files, etc.

 Execute JavaScript and apply CSS

 Render the page

COMP303 Browsers Page 17

The Acid3 Test
 How ‘good’ is a browser?

 Understand W3C standards, HTML, CSS, SVG, JavaScript

 The Acid3 test is a page which checks how well a
browser handles web standards

COMP303 Browsers Page 18

 It uses JavaScript to perform
100 tests which includes DOM
handling, HTML, CSS, and SVG

 If the test is perfectly executed
by the browser, this will be
created in the web page:

Some Acid 3 Results

 The Acid 3 test does not consider the speed of a browser

COMP303 Apache Page 20

Apache HTTP Server - Directory Structure

 You can install Apache in any directory:
 E.g., C:\Program Files\Apache Software Foundation\Apache2.1

COMP303 Apache Page 21

Apache (HTTP Server) – Configuration

 Configuration files are stored in conf directory

 Most important function is to configure where your website
files are located (i.e., http://www.mysite.com/index.html,
where is index.html stored?)

COMP303 Apache Page 22

Storing Web Files

 Web files are stored under the htdocs directory

COMP303 Apache Page 23

Apache Modules

 Modules add various functions to the Apache server;
examples of useful modules:
 mod_deflate compresses content before sending it to the browser

using gzip compression.

 mod_rewrite allows Apache to rewrite incoming URLs and rewrites
them on the fly according to the needs of your server application.

 mod_evasive detects DoS or DDoS attacks by denying IP addresses
when suspicious access patterns are detected

 mod_security is a Web Application Firewall that protects websites
from attacks such as Code Injection attacks, SQL injection, etc.

 mod_ssl supports HTTPS, strong cryptography via Secure Sockets
Layer and Transport Layer Security protocols

24

Apache Tomcat
 Tomcat is a container for Servlets and JSP

 Tomcat can act as a simple standalone server for Web
applications that use HTML, servlets, and JSP
 The user submits an HTML form

 Tomcat finds the servlet based on the URL and the deployment
descriptor (web.xml) and passes the request to the servlet

 The servlet writes an HTML page containing the response

 Or forwards the response to JSP which embeds the response in an
HTML page

 Tomcat returns the HTML page to the user

COMP303 Apache Page 25

Take Home Messages

 Web architecture could be as simple of a client-server system
serving static pages to dynamic pages served from data
stored in database system (3-tier)

 Both web client and web server are very mature

 Apache HTTP Server is the world’s most popular web server
(and free)

 HTTP implements many functions not covered in the course
(e.g., cache control)

