
COMP 4021

Internet Computing

Cookies

David Rossiter

Stateful Protocol

 The result of a request depends on the “state” of the
communicating parties, e.g., the meaning of “next page”
depends on what the “current page” is

COMP303 Cookies Page 2

Client:
dlee

Server:

A B D C

Get Next

Which page?

 Server needs to remember two states: user ID and current page
 [user=dlee, current_page=B] Get Next => returns C

Stateful vs Stateless Protocol

 Stateful protocols are more efficient but stateless protocols are
more scalable (i.e., suitable for internet) WHY?

COMP303 Cookies Page 3

Get a page given exact URL Stateless

Get the current page Stateful “current” depends on
where you are

Get the “next” page Stateful “next” depends on
where you are

HTTP is Stateless

 An exact URL is required to get a page

 The returned page is the same whether or not you send the
URL today or tomorrow or via different webpages (of course,
page content could have been updated)

 Bing’s navigation bar for the result pages

COMP303 Cookies Page 4

 Current page showing results from 31 to 40

 Prev URL: http://www.bing.com/search?q=4021&go=&qs=n&pq=4021
&sc=0-0&sp=-1&sk=&first=21&FORM=PQRE

 Next URL: http://www.bing.com/search?q=4021&go=&qs=n&pq=4021
&sc=0-0&sp=-1&sk=&first=41&FORM=PORE

HTTP simulating Stateful Protocol

 Browser remember states; server does not remember states

 [current_page=B] Get Next => Get C

COMP303 Cookies Page 5

Client:
dlee

Server:

A B D C

Get C

C

Current_page=B

Get Next

What Are Cookies?

 Basically, cookies are just text messages that allow the
browser/server to remember the “states” of the interaction
 E.g., Whom am I talking to (user name), visit history, etc.

 A web site can store cookies in a browser and later read and
modify them

 If you visit the web site again, then JavaScript code in the web
page can read the cookies that were stored earlier

 Not just websites – files loaded from local disk can also use
cookies (If cookies are handled by client-side JavaScript)

COMP303 Cookies Page 6

Things Stored in Cookies

 You can store anything you want in a cookie

 Examples of things commonly stored:
 The date/ time you last visited the web site

 How many times you have been to the web site

 What things you clicked on (e.g. books, etc)

 The highest score so far – for a game

COMP303 Cookies Page 7

Example Cookie Data - IE

 For IE, each web site is given its own cookies file

 All cookie data for that web site is stored in that file

Example Cookie Data - IE

Cookie Limitations

 A browser can hold up to 300 cookies (or 4 KB per cookie)

 There is a maximum of 20 cookies per web site
 If you already have 20 cookies and you add a new cookie the browser

finds the oldest cookie for that web site and throws it away

 A cookie has a byte size limitation of 4096 bytes (4KB)
 If you add a new cookie and this makes the size larger than 4kB, then

the browser finds the oldest cookie for that web site and throws it
away

 All of these limitations may be different from version to
version and from browser to browser

COMP303 Cookies Page 10

Using JavaScript for Cookies

 JavaScript controls cookies through the document.cookie
property

 You can read cookies by reading it

 You can make a cookie by changing it

COMP303 Cookies Page 11

Reading the Cookies

 document.cookie is a string containing all of the cookies

associated with the current web site

 To see all the cookies do: alert(document.cookie)

 If document.cookie has three cookies it will have this structure:

cookieName1=cookieValue1;cookieName2=cookieValue2;cookieN
ame3=cookieValue3

 For example: name=dave;score=8900;total_time=46

 So you need JavaScript string handling to extract the individual
data out of the string

COMP303 Cookies Page 12

Saving/Updating a Cookie

 Because document.cookie is just a string, changing it is
straightforward

 For example, the following JavaScript statement sets two
cookies:
document.cookie = "name=peter;score=260";

COMP303 Cookies Page 13

Example JavaScript

<head> <script>

 var today = new Date();

 now = today.getHours() + ":" + today.getMinutes() + ":" +
today.getSeconds();

 document.cookie = "last_visit=" + now;

 document.writeln(document.cookie);

</script> </head>

COMP303 Cookies Page 14

 Put the date/time in a cookie, and shows it in the web page

Same as “write” but with a newline

Cookie Expiry Time

 It is a good idea to also set a time for the cookie to ‘die’ (expire)

 Here a cookie is made with a specific time to expire:
document.cookie = "name=peter;

 expires=Tue, 17-Mar-08 00:00:01 GMT";

COMP303 Cookies Page 15

Deleting a Cookie

 The way to delete a cookie is to set the date/time of the cookie
to a date/time that has already finished (i.e. 1970, or one
second ago, or one hour ago)

 The browser will then automatically remove the cookie

 For example:
document.cookie = "name=peter;

 expires=Thu, 01-Jan-70 00:00:01 GMT";

COMP303 Cookies Page 16

Altering a Cookie

 What if you have already made a cookie, but now you want to
change it?

 Cookies can be altered by simply
 reading the document.cookie string

 changing the string as appropriate

 copying the string back to document.cookie

COMP303 Cookies Page 17

Functions for Handling Cookies

 You can define functions to help with handling cookies

 The source code for a set of routines for handling cookies is
shown on the next few slides
 setCookie()

 getCookie()

 deleteCookie()

COMP303 Cookies Page 18

Cookie Handling - setCookie

function setCookie(name, value, expires, path, domain, secure) {

 var curCookie = name + "=" + escape(value) +

 ((expires) ? "; expires=" + expires.toGMTString() : "") +

 ((path) ? "; path=" + path : "") +

 ((domain) ? "; domain=" + domain : "") +

 ((secure) ? "; secure" : "");

 document.cookie = curCookie; }

 This code creates a cookie (using parameters passed to it)

 The expiry time needs to be given to it in milliseconds

 You can see that there are other possible parameters for a cookie
not discussed here – path, domain, and secure

Cookie Handling - getCookie

function getCookie(name) {

 var dc = document.cookie;

 var prefix = name + "=";

 var begin = dc.indexOf("; " + prefix);

 if (begin == -1) {

 begin = dc.indexOf(prefix);

 if (begin != 0) return null;

 } else begin += 2;

 var end = dc.indexOf(";", begin);

 if (end == -1) end = dc.length;

 return unescape(dc.substring(begin + prefix.length, end)); }

Use string functions to extract
data from the cookie string

Position (or Index) where prefix
appears in cookie string

Start and end positions of the
name cookie in cookie string

co
o

ki
e

n
o

t
fo

u
n

d

Convert %20 to “ “, etc.

Cookie Handling - deleteCookie

function deleteCookie(name, path, domain) {

 if (getCookie(name)) {

 document.cookie = name + "=" +

 ((path) ? "; path=" + path : "") +

 ((domain) ? "; domain=" + domain : "") +

 "; expires=Thu, 01-Jan-70 00:00:01 GMT"; } }

• path - path of the cookie (must be same as path used to
create cookie)

• domain - domain of the cookie (must be same as domain
used to create cookie)

Using the Functions

 Two examples follow

 Example 1 – A web counter
 Each time you visit the page, it adds one to a counter stored in a

cookie

 Example 2 – A name tracker
 The name of the user is stored in a cookie and is shown every time

the page is visited

COMP303 Cookies Page 22

Example 1 - Web Counter

 Use a cookie to count how many times someone has visited a
particular web page

 The following script displays the number of times the user has
visited, assuming just one person uses the browser)

 Reload the page to see the counter increment

COMP303 Cookies Page 23

var now = new Date(); // create an instance of the Date object

now.setTime(now.getTime() + 365*24*60*60*1000); // expires in 365 days

 // getTime() and setTime() work in msec

var visits = getCookie("counter");

if (!visits) {

 visits = 1; // if the cookie wasn't found, this is the first visit

 document.write("By the way, this is your first time here.");

 } else {

 visits = parseInt(visits) + 1; // increment the counter

 document.write("By the way, you have been here " + visits + " times.");
}

setCookie("counter", visits, now); // set the new cookie

Example 1 - Web Counter

name, value, expire

Example 2 - Name Tracker

 The following script asks the user for his/ her name, and
"remembers" the input

 It then welcomes the user each time he/ she accesses the
page, without asking again for the name

COMP303 Cookies Page 25

var now = new Date(); // create an instance of the Date object

now.setTime(now.getTime() + 365 * 24 * 60 * 60 * 1000);

var username = getCookie("username");

 // if the cookie wasn't found, ask for the name

if (!username) username = prompt("Please enter your name:", "");

setCookie("username", username, now); // set the new cookie

if (username) {

 document.write("Welcome to this page, " + username + ".");

 setCookie("username", username, now);

 } else document.write("You refused to enter your name.");

Example 2 - Name Tracker

function changeName() {

 var now = new Date();

 // cookie will expire one year later

 now.setTime(now.getTime() + 365 * 24 * 60 * 60 * 1000);

 username = prompt("Please enter your name:", "");

 setCookie("username", username, now); }

 Altering a cookie, e.g., allow user to change to a new name

Example 2 - Name Tracker

 Cookies is a quick-and-dirty way of storing information (or
states) about an interaction

 Sizes of cookies are limited

 Storing cookies as strings make cookies hard to access and
maintained

 HTML5 has better support on “local storage”

Take Home Message

