
COMP 4021

Internet Computing

XML

Dik Lun Lee 2

History
• Mid 1980s: Information retrieval, library and publishing communities

developed SGML (Standard Generalized Markup Language):

• Step 1 (Late 1980s): HTML taken some feature from SGML (e.g., tagging);
DTD existed for HTML but not used very much

• Step 2 (Mid 1990s): XML as a simplified version of SGML

• Step 3 (Late 1990s till now): XHTML, SVG, MathML, etc., etc.

• Step 4 (Early 2000s): XML Schema

SGML

HTML

XML

XHTML MathML SVG

DTD
DTD

XML Schema
1 4

3

2

3

Many Standards are Built on XML

Dik Lun Lee 4

XML

• eXtensible Markup Language

• HTML is for markup of documents; XML can be used to mark up
any kind of data (structured data as in database), strings, and
supports nesting

• It is NOT a language that allows you to add more commands
and functions to make up a more powerful (and hence bigger)
language

• It is a language that allows you to define a new language

• You need a grammar to define a new language; XML allows you
to define a grammar using Document Type Definition (DTD)

Dik Lun Lee 5

Briefly Speaking …

 XML describes the structure/ content of a document

 You can quickly define your own XML structure and let other
application to parse the structure
 Of course, defining a full grammar is very difficult (as we will see later)

 XML doesn’t describe any visual appearance

Dik Lun Lee 6

Tags, Elements and Attributes

Tag: start tag

Tag: end tag

Element: The “address” element contains four
sub-elements, name, street, city and postal-code

Attribute:
Name=value
pairs inside
start tags

Dik Lun Lee 7

Well-formed, Valid and Invalid XML

• Well-formed documents: Follow the XML syntax rules but don't
have a DTD or schema

• Valid documents: Follow both the XML syntax rules and the
rules defined in their DTD or schema

• Invalid documents: Don't follow the XML syntax rules or the
DTD or schema, if available

Dik Lun Lee 8

XML Syntax Rules (I)

• The root element: An XML document must be contained in a
single element called the root element

• XML elements can't overlap.

Dik Lun Lee 9

XML Syntax Rules (II)

• End tags are required; note how empty elements are handled

• Elements are case sensitive (convention is to use lower case as
much as possible)

Dik Lun Lee 10

XML Syntax Rules (III)

• An attribute, if specified, must have a value

• Attribute values must be double or single quoted

• Parameter values are enclosed in speech marks

 I.e. <circle id="face_outline" . . . />

Dik Lun Lee 11

Why XML: Standard for Data Exchange

• XML is an standard for data exchange

• With DTD/XML Schema, an XML file can be validated

• XML data is self described

EmpNo Name Salary

99123 John 10000

90124 Mary 15000

99123 John 10000

90124 Mary 15000

Site 1 Site 2

Site 3

What do these values mean?

Dik Lun Lee 12

Why XML: Standard for Data Exchange

EmpNo Name Salary

99123 John 10000

90123 Mary 15000

EmpNo Name Salary

99123 John 10000

EmpNo Name Salary

90123 Mary 15000

Site 1 Site 2

Site 3

OR ???

OR CSV, TXT, etc. ???
What if the data is binary?
If the table is stored in Oracle, can you simply send the table?

Dik Lun Lee 13

Why XML: Standard for Data Exchange

EmpNo Name Salary

99123 John 10000

90123 Mary 15000

Site 1 Site 2

Site 3

<Employee>
<EmpNo>99123</EmpNo>
<Name>John</Name>
<Salary>10000</Salary>
</Employee>

<Employee>
<EmpNo>90123</EmpNo>
<Name>Mary</Name>
<Salary>15000</Salary>
</Employee>

• XML data is self described

 XML data is Unicode based, thus supporting multiple languages
in the same file

 By sharing the same DTD, a site can validate the XML data
received from another site before using it

Dik Lun Lee 14

Why XML: Standard for Data Exchange

Site 1

Site 2 <Employee>
<EmpNo>99123</EmpNo>
<Name>John</Name>
<Salary>10000</Salary>
</Employee>

<Employee>
<EmpNo>90123</EmpNo>
<Name>Mary</Name>
<Salary>15000</Salary>
</Employee>

Site 3 DTD

Dik Lun Lee 15

Why XML: Availability of XML tools

• Many tools are available for the processing of XML data: Java
XML, XML DOM, XSLT, SAX, PHP-XML, etc.

• If XML data is generated by another program, you may want to
validate it against the DTD

XML Browser Transform

How To Render/Display XML?

 Some possibilities for handling XML:
1) Give it to IE to display

2) Use a CSS file to render the XML

3) Use JavaScript to convert the XML

4) Use a XSLT file to convert the XML

COMP303 XML 2 Page 16

Method 1) IE Display of XML

 An XML file by itself has no display parameters

 If you give a pure XML file (which has no CSS or XSLT) to IE it
will show the file using a tree structure display
 Example on next page

 Can hide branches by clicking on the ‘-’

COMP303 XML 2 Page 17

Method 2) XML and CSS

 Use a style sheet file to define the display style for each tag

COMP303 XML 2 Page 19

<Short-Story-Collection>

 <Title>The Best of Roald Dahl</Title>

 <Description>

 This collection brings together Dahl's finest work, illustrating
his genius for the horrific and grotesque which is unparalleled.

 </Description>

 <Pages>186</Pages>

 <Price>HK$95.00</Price>

</Short-Story-Collection>

. . .

Example XML+CSS - The CSS

Short-Story-Collection { background:url(short_story.png); }

Title {

 display:block; margin-top:1em;

 font-size: 18pt; color:slategray; }

Description {

 display:block; color:black; text-align:justify; margin-left: 3em; }

Pages {

 color:red; text-align:right; text-indent: 3em; }

Price {

 color:red; text-align:right; border:1px solid red; padding:5px; }

COMP303 XML 2 Page 20

Example XML+CSS - The Result

COMP303 XML 2 Page 21

CSS - Limitations

 So XML+CSS works well

 But what if you want more, for example:
 You want ‘Pages:’ in front of the page count

 You want ‘Price:’ in front of the price

 You want the data sorted in alphabetical order

 You want the XML displayed as SVG

 CSS can’t do any of these things
- need method 3 or 4

COMP303 XML 2 Page 22

DOM root

Method 3) Use JavaScript

1. Pure XML is inside
the DOM structure

‘Pure’ XML SVG/XHTML etc

2. JavaScript processes the XML and builds desired
display content such as SVG, XHTML, etc

• This approach can also be used by VBScript (in a web page),
ActionScript (in Flash), and Java (i.e. in an applet)

Conversion of XML to HTML Using

JavaScript

var html = "";
var list = xmlDoc.getElementsByTagName("Short-Story-Collection");
for (var i = 0; i < list.length; i++) {
 var el = list.item(i);
 html += "<div class='Short-Story-Collection'>";
 . . .
 html += "";
 html += "Price: " +
 el.getElementsByTagName("Price").item(0).firstChild.nodeValue;
 html += "</div>";
 . . .
 html += "</div>"; }
. . .
document.body.innerHTML = html;

In this way you have total
control over the output
of the conversion

Example Result

COMP303 XML 2 Page 25

Method 4) XSL/ XSLT

 XSL =Extensible Stylesheet Language

 XSL is a group of recommendations for handling XML

 XSLT=XSL Transformations

 XSLT is a language for converting XML into other XML
documents

 No longer under development by W3C
 last update released in Jan 2012; official announcement to stop

further development in Nov 2013

 XSL/XSLT are still supported by all major browsers

COMP303 XML 2 Page 26

XSL/ XSLT

 You can use XSL to change XML into almost anything

COMP303 XML 2 Page 27

XML

Any other

language, i.e.
XHTML,

(DHTML), SVG,
SMIL,

MATHML, etc

XSLT Engine
(often in browser)

XSLT rules

Example 1
<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl= "http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html"/>

 <xsl:template match="/">

 <html> <body>

 <xsl:apply-templates/>

 </body> </html>

 </xsl:template>

</xsl:stylesheet>

01_simple.xsl

HTML will be generated

Output the html codes

2) Apply template to any child, but
which template? None has been
defined for any child, so just echo value

Te
m

p
la

te

R
u

le

1) Create a template and apply it to matched
elements; "/" means root of XML document

 Create an XSL template that contains:

 Texts (typically HTML) to pass through XSLT without change

 XSLT commands that perform XSLT operations

 XML input

COMP303 XML 2 Page 29

 HTML output

<document>

This is a simple mapping of xml to html by
using xsl transformation.

</document>

<html>

<body>

This is a simple mapping of xml to html by
using xsl transformation.

</body>

</html>

Example 1 Outputs

Example 2

 The XML input

COMP303 XML 2 Page 30

<?xml version="1.0" encoding="iso-8859-1"?>

<?xml-stylesheet type="text/xsl" href="02_two_levels.xsl"?>

<document>

 <title>02_two_levels</title>

 <content>This is a simple mapping of xml to html by using xsl
transformation.</content>

</document>

Improved Rules
<xsl:template match="document">

 <html> <head> <xsl:apply-templates select="title" /> </head>

 <body> <xsl:apply-templates select="content" /> </body> </html>

</xsl:template>

02_two_levels.xsl

<xsl:template match="title">

 <title><xsl:apply-templates/></title>

</xsl:template>

<xsl:template match="content">

 <p><xsl:apply-templates/></p>

</xsl:template>

<document>

 <title>02_two_levels</title>

 <content>This is a simple mapping

 of xml to html by using xsl
transformation.</content>

</document>

Apply template to child "title"

Which template? It is defined here

Same for "content"

What happens if you reverse the two apply-
templates for "title" and "content"?

COMP303 XML 2 Page 32

<html>

<head>

 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8">

 <title>02_two_levels</title>

</head>

<body>

 <p>This is a simple mapping of xml to html by using xsl
transformation.</p>

</body>

</html>

Example 2 HTML Output

Namespaces

 Different languages define their own names, e.g., HTML, SVG,
MathML, etc.

 If you use two or more of languages at the same time, a name
may have conflicting definitions in those languages:
 E.g., HTML has a div element for a rectangular area but MathML may

have a div element for division

 How to tell if ‘div’ refer to HTML div or Math div?

 The solution is for each language to have a namespace which
defines the valid names for that language

 Web page content can say exactly which namespace it is using

COMP303 XML and Namespaces Page 33

Dik Lun Lee 34

XML Namespace
• Three namespace prefixes defined below: addr, books,

mortgate, each defining it own set of valid elements (not shown
in the example)

• Sub-elements inherit namespace from parent elements

D
ef

in
e

3

n
am

es
p

ac
es

Reference to the namespace

Example Using Two Namespaces

<my_web_page
xmlns:html ="http://www.w3.org/1999/xhtml"
xmlns:mathml
="http://www.w3.org/1998/Math/MathML" >

 . . .

 <html:div>

 </html:div>

 . . .

 <mathml:div>

 </mathml:div>

 . . .

</my_web_page>

Uses MATHML
namespace

Uses the HTML
namespace

Dik Lun Lee 36

Take Home Message
• XML is the foundation of Web languages

• XML is a language that can be used to define new language
(including HTML, SVG, etc.)

• XML appears to be bulky but it is good for data exchange across
distributed websites (see next set of slides)

• There are many ways to render XML

• XSL is a complete XML language specifically for manipulating
XML data
• No longer under development by W3C (last update Jan 2012; official

announcement to stop further development made in Nov 2013)

• XSL/XSLT are still supported by all major browsers

