COMP 4021
Internet Computing

Dynamic SVG
Using JavaScript

David Rossiter

DOM and JavaScript Review

e JavaScript can access and control any content stored in the

browser DOM, at any time

* So it can change HTML, SVG, XML, and anything else that is

currently loaded into the browser

* This doesn’t apply to applets and Flash which are ‘black boxes’

and do not use the browser DOM

<tahle>

!

<thody:=

<tr>

!,y

.H!L

<tr>

é”ﬁ

.R!L

<td=>

<td>

<td=

<td>

v

T,

e
N§

hady ere\! '

N

v

-

Aealian

H"'-_

-,

1

) ({Over the Hvarh.
A5 _Charlie /'

T —~

E

Page 2

™,
Dorian)

Some DOM Commands

Many commands are available for accessing and changing the
DOM, e.g.,

thing = getElementByld("name"

— search for name in the DOM

thing.setAttribute("x",100)

— change the x attribute of thing to 100 In SVG the x

X_position = thing.getAttribute("x") position of
an object is

— return the value of the x attribute and store .
o . _ stored in the
it in a JavaScript variable e attribute

Page 3

Example Animation - Ball

* Object is shown moving and rotating, as if it was real
— ball’s y coordinate does not change

— ball’s x coordinate increments

— to make the ball “roll” (can be observed from the cross at the ball’s
center), the ball has to rotate by a fixed degree in each increment

AnimO1_js_matrix.svg

COMP303 Dynamic SVG Using JavaScript Page 4

Example Animation - Ball

This is achieved by using a matrix to handle the translation
and rotation of the ball

A timer is used to call a JavaScript function several times a
second

The matrix() parameters are then updated by the JavaScript
code

Page 5

Example Animation - Ball

e Definition of the ball:

<g id="ball">
<circle style="fill:magenta;stroke:black;"
cx="30" cy="140" r="20" />
<path style="fill:none;stroke:black;" } The cross at

d="M25,135 35,145 M35,135 25,145" /> :Ez ;‘Zﬂter of

</g>

When “ball” is transformed, both the circle
and the cross are changed in the same way

Page 6

function Animate()

{

var

}

COM

Example Animation - Ball

Precompute sin(0)

/ and cos(b) Rotate +4
d

sp = Math.sin(psi), cp = Math.cos(psi), FPIEEE
x2 =x1+r*psi, y2 =y1, //r=ball radius =20 /
matrix - "matriX(" + Cp +||’|I + Sp + Il’ll + (—Sp) + ||’|l + Cp + "’"

+ (-x1*cp+yl*sp+x2) +"," + (-x1*sp-yl*cp+y2)+")"; X

Translate and

ball.setAttribute("transform", matrix); rotate the ball
psi += Math.P1/45; //increment every 4 degrees around its center
if (x2 < xend)

window.setTimeout("window.Animate()", 10);
return true;

P303 Dynamic SVG Using JavaScript Page 7

Example Animation - Wave

e Object is shown behaving as if it was a wave

Anim02_js_path.svg

Page 8

Wave — Basic Line

* A basicflat line is produced as follows:

<svg>
<rect style="fill:none;stroke:black"
x="0" y="0" width="399" height="299"/>
<path id="line"
style="fill:#905CAS,; fill-opacity:0.5; stroke:#905CA8"
d="MO0,150 h400"/>
</svg>

Page 9

Wave — Getting Started

You can see that the SVG element which is being animated is a
path called ‘line’

To do the animation we first find the element:
var linenode = svgdoc.getElementByld('line');

The path is stored in the ‘d” attribute of that node

So the path can be updated like this:
linenode.setAttribute('d', new path data)

As long as we update the path data appropriately, we can
achieve the animation effect

Page 10

Wave Line Control Points

* The path draws the blue wave shape with four control points
<path d=“M0,300 L0,150 C100,100,200,200,400,150 L400,300 z” >

il

start-point ontrol- control- end-point
point 1 point 2
* Itis aclosed shape with three lines and a cubic curve so that the shape can

be filled with a color

 The animation is performed by changing the two control control points
several times per second |

 The end points are left unchanged 3) 400,150
2) LO,150 — 4) L400,300
1) M0,300 5) 2 /

Page 11

Animating the Control Points

* After generating new positions, setAttribute is used to put
them in the path element like this:

15t control point 2"d control point
linenode.setAttribute ('d’,

'MO0,300 10,150 C' +x0+", ' +yOl+', "+[x1+", '+ y1 -F}
'[400,150 L400,300 2');

-

Create text sequence to draw the path
for the boundary of the violet region in
the animation (see previous slide)

End point

Recall that: M=move C=cubic Bezier curve
L=draw line to z=finish/go back to the start

Page 12

Main Animation Function

function next_frame () {
var linenode = svgdoc.getElementByld ('line'); // Get path object being animated
if ('linenode) return;
if (tx0<O0 || (txO==x0 && ty0==y0 && tx1l==x1 && tyl ==vyl))
{ tx0 = Math.floor (400*Math.random()); ™ A
ty0 = Math.floor (300*Math.random()); . the control points only
tx1 = Math.floor (400*Math.random()); when the current
tyl = Math.floor (300*Math.random()); } target is reached
// Change current coordinates by up to +/-10 pixels towards target values.
X0 = change_coord (x0, tx0); yO =change coord (y0, ty0); Function shown
x1 = change_coord (x1, tx1); y1=change coord (y1, tyl); } on next slide
// Change the path element's "d" attribute to use the new coordinates.
linenode.setAttribute ('d’,
'MO0,300L0,150C'+x0+",'+y0+',"+x1+',"+y1+',400,150L400,300z'); }

Function for Changing Control Points

- Every call moves the coordinate value (current_value) 10
points closer to the target value to create smooth motion

function change_coord (current_value, target_value) {
if (current_value < target_value) {
current_value +=10;
if (current_value > target_value)
current_value = target_value; }
if (current_value > target_value) {
current_value -=10;
if (current_value < target_value)
current_value = target_value; }
return current_value; }

Take Home Message

 SVGis part of DOM and hence can be manipulated by
JavaScript
* JavaScript can be used to create SVG animation by changing
the properties of the SVG objects
— |t can create animation that cannot be handled by Dynamic SVG alone
— JavaScript providse flexible control but requires more programming

Page 15

