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Coordination System and Matrix 
Transformation in SVG
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Transformation using Matrix

• In computer graphics, matrices are often used to 
represent graphics objects and operations on them

• Each operation (e.g., translation/ rotation/ scaling) can be 
represented by a matrix
– A sequence of operations can be pre-computed into one single 

matrix and applied to a graphic element efficiently

• SVG supports the matrix() command

• You need to understand the general idea of matrix() as 
discussed in this set of slides – but you won’t be expected 
to build something using it, as it is too ‘pure’ computer 
graphics for comp 4021
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Initial User Coordinate System

• Initial viewport = Initial user Coordinate System

• Initial viewport = Outermost <SVG> element
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Initial User Coordinate System

The three small 
red rectangles 
(see carefully)

x=300

y=100

Stroke-width is 3 pts, which is thick, 
we position the “vertical center” of 
the line at y=1.5 pts so that its upper 
edge just touches the y=0 axis.
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Display in Current Coordinate System

lower-left corner of text at 30,30

x and y axis

Text
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Translate  the Coordinate System

Translate the 
coordinate 
system to 50,50

Identical to 
previous slide 
(except the 
text string) but 
this <g> is 
drawn in the 
new coordinate 
system

50,50 in old coordinate system

0,0 in new coordinate system
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Rotate the Coordinate System

50,30 in old coordinate system
0,0 in new coordinate system
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Translate then Scale the Coordinate System

200,40 in old coordinate system50,30

Font size is the same as before 
but is displayed 50% larger

Stroke width is the same as 
before but is 50% thicker now
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Skew the Coordinate System – skewX
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Skew the Coordinate System – skewY
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Take Home Message

• The effect of manipulating an object in a coordinate system 
can be achieved by manipulating the coordinate system

• After you “transformed” the coordinate system, everything 
you put on the coordinate system is changed

– Does the Super Mario Brother moves or the background moves?

• <g></g> transforms the coordinate system for all objects 
defined inside it

• <g transform=“translate(10,10)”>
<g id=“1” transform=“rotate(30)” …> … </g>
<g id=“2” …> … </g> 

</g>
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Matrix Transformation

• Matrix representation of a transformation:

• Vector form: [a b c d e f ]

• Transformations map coordinates and lengths of a new 
coordinate system into a previous coordinate system:

• To draw a line (e.g., horizontal red 
line) in the new coordinate system, 
map it into a line in the original 
coordinate system

3x3 matrix
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Matrix Transformation

• translate (tx, ty)
vector form: [1 0 0 1 tx ty]

• E.g., (x,y) in the new coordinate system 
is the same as (x+tx,y+ty) in the 
original coordinate system, i.e., a 
translation of (tx,ty)
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• scale(sx, sy)
vector form: [sx 0 0 sy 0 0]

• 1 unit of x in the new coordinate system 
is sx units of x in the original coordinate 
system , e.g., sx=1.5 means that 1 unit 
of new x is equal to 1.5 units of old x

• Same for y and sy 
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Matrix Transformation: Rotate

• rotate(a)

[cos(a) sin(a) –sin(a) cos(a) 0 0 ]
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• Original coordinate system

• New coordinate system with a point at x,y

• What is the point’s (x’,y’) in the original coordinates system?

• x’ = mn = mp – np

• mp = x*cos(a)

• np = y*sin(a)

• x’ = x*cos(a) – y*sin(a)

• Similarly for the point’s y’ in the original coordinate 
system
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Matrix Transformation: Rotate at Center

• rotate(a <cx> <cy>) is equivalent to:
translate(cx,cy) rotate(a) translate(-cx, -cy)
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Matrix Transformation

• skewX(a)
[1 0 tan(a) 1 0 0]

• skewY(a)
[1 tan(a) 0 1 0 0]
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Nested Transformation

• Sequence of transformation can be pre-computed

• Current Transformation Matrix (CTM): All transformations that have 
been defined on the given element and all of its ancestors up to and 
including the current viewport
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Nested Transformation
Rotate around the origin, which is now at 50,90

Translate 130,160 
in the green 
coordinates
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Order of Transformation Matters

• The green square on the left 
is produced by 
translate(15,15) rotate(30) of 
the red square

• The green square on the 
right is produced by 
rotate(30) translate(15,15) of 
the red square

Current point before transform

This means translate then rotate the coord system, not the box; however, 
the yellow box gives us an impression that it refers to first translate the 
box then rotates it, which is incorrect; see examples and discussion under 
svg examples in course homepage

Same comment 
as above
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Matrix Example (Scaling)

• The following matrix multiplies all x values by 1.5 and all y 
values also by 1.5

<image xlink:href="ust.jpg" 

transform="matrix(1.5 0 0 1.5 0 0)" x="0" y="0" width="300" height="200"/>

trans5_matrix.svg
trans1_nothing.svg
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Multiple Operations Example #1

• A transform can include multiple operations performed from 
right to left (why not left to right?)
– transform=“rotate(30) translate(50, 0)”

1) translate a shape by (50,0); (1)  (2)

2) rotate it -30 degrees; (2)  (3)

– transform=“translate(50, 0) rotate(30) ”

1) rotate a shape -30 degrees; (1)  (a) 

2) translate it by (50,0); (a)  (b) Origin
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Multiple Operations Example #2

• transform=“translate(150,100),rotate(30),translate(-150,-100)”
1) translate a shape by (x1, y1) = (-150, -100) => yellow box

2) rotate it 30 degrees => black box around origin

3) translate it by (x2, y2) = (150, 100) => black box around pink box

• The above transform rotates a shape around (150,100)
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Multiple Operations Example #3

• transform=“translate(200,100),rotate(30),translate(-150,-100)”
1) translate a shape by (x1, y1) = (-150, -100) => yellow box

2) rotate it 30 degrees => black box around origin

3) translate it by (x2, y2) = (200, 100) => black box around pink box

• See the following slides
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General Matrix for the Three Operations

[ 1 0 x2]   [cos(a) -sin(a) 0]   [ 1 0 –x1]  

[ 0 1 y2] * [sin(a)  cos(a) 0] * [ 0 1 –y1] 

[ 0 0 1 ]   [  0       0    1]   [ 0 0  1 ] 

translate (-x1, -y1) =>
translate (-150, -100)

rotate (a) => rotate (30)

translate (x2, y2) =>
translate (200, 100)

[cos(a)  -sin(a)   -x1cos(a) + y1sin(a) + x2]

[sin(a)   cos(a)   -x1sin(a) – y1cos(a) + y2]

[  0       0               1                ]

After multiplying all three matrices, the CTM is:



COMP303 Dynamic SVG Page 25

• The equivalent SVG matrix is:

transform = 

"matrix(cos(a), sin(a), 

-sin(a), cos(a), 

-x1cos(a) + y1sin(a) +x2,   -x1sin(a) – y1cos(a) + y2)"

• In this particular case:

transform="matrix(0.866  0.5 -0.5  0.866 120.1  -61.6)"

The SVG Matrix for the Example

a = 30
x1 = 150, y1 = 100
x2 = -200, y2 = 100
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Result of the Example

trans6_matrix2.svgtrans1_nothing.svg

1. translate(-150,-100) from origin
2. then rotate it 30 degrees
3. then translate (200, 100)

Original position

(1) translate(-150,-100)

(2) rotate 30

(3) translate(200,100)

300

200
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Result of the Example

• Without using a composite matrix, the previous example 
can be done with (operations from right to left):

< image xlink:href="ust.jpg" transform="

translate(200,100)  rotate(30)  translate(-150,-100)"

x="0" y="0" width="300" height="200" />
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Take Home Message

• SVG has implemented sophisticated computer graphics 
techniques for drawing, transforming and animating objects

• Distinguish the differences of an object manipulation in 
different coordinate systems
• Transformation and coordination systems is not restricted to SVG and 

is applicable to other graphics packages (e.g., java 2d and java awt)

• You can use transform commands or matrix operations to 
manipulate objects

• Despite its apparent simplicity, SVG can produce very 
complex graphics


