
Dik Lun Lee 1

Coordination System and Matrix
Transformation in SVG

COMP303 Dynamic SVG Page 2

Transformation using Matrix

• In computer graphics, matrices are often used to
represent graphics objects and operations on them

• Each operation (e.g., translation/ rotation/ scaling) can be
represented by a matrix
– A sequence of operations can be pre-computed into one single

matrix and applied to a graphic element efficiently

• SVG supports the matrix() command

• You need to understand the general idea of matrix() as
discussed in this set of slides – but you won’t be expected
to build something using it, as it is too ‘pure’ computer
graphics for comp 4021

Dik Lun Lee 3

Initial User Coordinate System

• Initial viewport = Initial user Coordinate System

• Initial viewport = Outermost <SVG> element

Dik Lun Lee 4

Initial User Coordinate System

The three small
red rectangles
(see carefully)

x=300

y=100

Stroke-width is 3 pts, which is thick,
we position the “vertical center” of
the line at y=1.5 pts so that its upper
edge just touches the y=0 axis.

Dik Lun Lee 5

Display in Current Coordinate System

lower-left corner of text at 30,30

x and y axis

Text

Dik Lun Lee 6

Translate the Coordinate System

Translate the
coordinate
system to 50,50

Identical to
previous slide
(except the
text string) but
this <g> is
drawn in the
new coordinate
system

50,50 in old coordinate system

0,0 in new coordinate system

Dik Lun Lee 7

Rotate the Coordinate System

50,30 in old coordinate system
0,0 in new coordinate system

Dik Lun Lee 8

Translate then Scale the Coordinate System

200,40 in old coordinate system50,30

Font size is the same as before
but is displayed 50% larger

Stroke width is the same as
before but is 50% thicker now

Dik Lun Lee 9

Skew the Coordinate System – skewX

Dik Lun Lee 10

Skew the Coordinate System – skewY

COMP303 Dynamic SVG Page 11

Take Home Message

• The effect of manipulating an object in a coordinate system
can be achieved by manipulating the coordinate system

• After you “transformed” the coordinate system, everything
you put on the coordinate system is changed

– Does the Super Mario Brother moves or the background moves?

• <g></g> transforms the coordinate system for all objects
defined inside it

• <g transform=“translate(10,10)”>
<g id=“1” transform=“rotate(30)” …> … </g>
<g id=“2” …> … </g>

</g>

Dik Lun Lee 12

Matrix Transformation

• Matrix representation of a transformation:

• Vector form: [a b c d e f]

• Transformations map coordinates and lengths of a new
coordinate system into a previous coordinate system:

• To draw a line (e.g., horizontal red
line) in the new coordinate system,
map it into a line in the original
coordinate system

3x3 matrix

Dik Lun Lee 13

Matrix Transformation

• translate (tx, ty)
vector form: [1 0 0 1 tx ty]

• E.g., (x,y) in the new coordinate system
is the same as (x+tx,y+ty) in the
original coordinate system, i.e., a
translation of (tx,ty)























































11

*

100

10

01

tyy

txx

y

x

ty

tx

• scale(sx, sy)
vector form: [sx 0 0 sy 0 0]

• 1 unit of x in the new coordinate system
is sx units of x in the original coordinate
system , e.g., sx=1.5 means that 1 unit
of new x is equal to 1.5 units of old x

• Same for y and sy 

















































1

*

*

1

*

1

00

00

ysy

xsx

y

x

sy

sx

Dik Lun Lee 14

Matrix Transformation: Rotate

• rotate(a)

[cos(a) sin(a) –sin(a) cos(a) 0 0]





















































 

1

)cos(*)sin(*

)sin(*)cos(*

1

*

100

0)cos()sin(

0)sin()cos(

ayax

ayax

y

x

aa

aa

a

x

y

• Original coordinate system

• New coordinate system with a point at x,y

• What is the point’s (x’,y’) in the original coordinates system?

• x’ = mn = mp – np

• mp = x*cos(a)

• np = y*sin(a)

• x’ = x*cos(a) – y*sin(a)

• Similarly for the point’s y’ in the original coordinate
system

x’

y’

p

n
a

m

Dik Lun Lee 15

Matrix Transformation: Rotate at Center

• rotate(a <cx> <cy>) is equivalent to:
translate(cx,cy) rotate(a) translate(-cx, -cy)

Dik Lun Lee 16

Matrix Transformation

• skewX(a)
[1 0 tan(a) 1 0 0]

• skewY(a)
[1 tan(a) 0 1 0 0]

Dik Lun Lee 17

Nested Transformation

• Sequence of transformation can be pre-computed

• Current Transformation Matrix (CTM): All transformations that have
been defined on the given element and all of its ancestors up to and
including the current viewport

Dik Lun Lee 18

Nested Transformation
Rotate around the origin, which is now at 50,90

Translate 130,160
in the green
coordinates

Dik Lun Lee 19

Order of Transformation Matters

• The green square on the left
is produced by
translate(15,15) rotate(30) of
the red square

• The green square on the
right is produced by
rotate(30) translate(15,15) of
the red square

Current point before transform

This means translate then rotate the coord system, not the box; however,
the yellow box gives us an impression that it refers to first translate the
box then rotates it, which is incorrect; see examples and discussion under
svg examples in course homepage

Same comment
as above

COMP303 Dynamic SVG Page 20

Matrix Example (Scaling)

• The following matrix multiplies all x values by 1.5 and all y
values also by 1.5

<image xlink:href="ust.jpg"

transform="matrix(1.5 0 0 1.5 0 0)" x="0" y="0" width="300" height="200"/>

trans5_matrix.svg
trans1_nothing.svg

COMP303 Dynamic SVG Page 21

Multiple Operations Example #1

• A transform can include multiple operations performed from
right to left (why not left to right?)
– transform=“rotate(30) translate(50, 0)”

1) translate a shape by (50,0); (1)  (2)

2) rotate it -30 degrees; (2)  (3)

– transform=“translate(50, 0) rotate(30) ”

1) rotate a shape -30 degrees; (1)  (a)

2) translate it by (50,0); (a)  (b) Origin

COMP303 Dynamic SVG Page 22

Multiple Operations Example #2

• transform=“translate(150,100),rotate(30),translate(-150,-100)”
1) translate a shape by (x1, y1) = (-150, -100) => yellow box

2) rotate it 30 degrees => black box around origin

3) translate it by (x2, y2) = (150, 100) => black box around pink box

• The above transform rotates a shape around (150,100)

COMP303 Dynamic SVG Page 23

Multiple Operations Example #3

• transform=“translate(200,100),rotate(30),translate(-150,-100)”
1) translate a shape by (x1, y1) = (-150, -100) => yellow box

2) rotate it 30 degrees => black box around origin

3) translate it by (x2, y2) = (200, 100) => black box around pink box

• See the following slides

COMP303 Dynamic SVG Page 24

General Matrix for the Three Operations

[1 0 x2] [cos(a) -sin(a) 0] [1 0 –x1]

[0 1 y2] * [sin(a) cos(a) 0] * [0 1 –y1]

[0 0 1] [0 0 1] [0 0 1]

translate (-x1, -y1) =>
translate (-150, -100)

rotate (a) => rotate (30)

translate (x2, y2) =>
translate (200, 100)

[cos(a) -sin(a) -x1cos(a) + y1sin(a) + x2]

[sin(a) cos(a) -x1sin(a) – y1cos(a) + y2]

[0 0 1]

After multiplying all three matrices, the CTM is:

COMP303 Dynamic SVG Page 25

• The equivalent SVG matrix is:

transform =

"matrix(cos(a), sin(a),

-sin(a), cos(a),

-x1cos(a) + y1sin(a) +x2, -x1sin(a) – y1cos(a) + y2)"

• In this particular case:

transform="matrix(0.866 0.5 -0.5 0.866 120.1 -61.6)"

The SVG Matrix for the Example

a = 30
x1 = 150, y1 = 100
x2 = -200, y2 = 100

COMP303 Dynamic SVG Page 26

Result of the Example

trans6_matrix2.svgtrans1_nothing.svg

1. translate(-150,-100) from origin
2. then rotate it 30 degrees
3. then translate (200, 100)

Original position

(1) translate(-150,-100)

(2) rotate 30

(3) translate(200,100)

300

200

Dik Lun Lee 27

Result of the Example

• Without using a composite matrix, the previous example
can be done with (operations from right to left):

< image xlink:href="ust.jpg" transform="

translate(200,100) rotate(30) translate(-150,-100)"

x="0" y="0" width="300" height="200" />

Dik Lun Lee 28

Take Home Message

• SVG has implemented sophisticated computer graphics
techniques for drawing, transforming and animating objects

• Distinguish the differences of an object manipulation in
different coordinate systems
• Transformation and coordination systems is not restricted to SVG and

is applicable to other graphics packages (e.g., java 2d and java awt)

• You can use transform commands or matrix operations to
manipulate objects

• Despite its apparent simplicity, SVG can produce very
complex graphics

