
COMP303
Internet Computing

David Rossiter

JavaScript 1

COMP303 JavaScript 1 Page 2

Client-Side Scripting Languages

 Scripting languages are used to control a
browser’s behavior

 VBScript: a subset of VB from Microsoft

 JavaScript: Sun/Netscape

 ActionScript: Flash; very much like JavaScript

 Use search engine to test popularity; JavaScript
is 100 times more popular than VBScript

COMP303 JavaScript 1 Page 3

JavaScript/ Java

Using JavaScript
HTML objects have events

which can trigger JavaScript

code. JavaScript can

generate and control HTML

objects.

Web page

HTML

Java Applet

A Java Applet
Parameters are typically

passed from the HTML to

the applet, once only, when

the applet starts.

Client

Application

Client

A Java Application
(stand-alone program)

Web page

HTML

JavaScript

Client
?

Flash/ Active X

An ActiveX component

in a web page
Active X components can have a lot

of access to Windows procedures.

However, there have been security

issues. Also, they are not ‘naturally’

supported by browsers except IE.

Web page

HTML

Flash

Flash
If any parameters are

passed to Flash then they

are typically passed from the

HTML to the flash

program, once only, when it

starts.

Client

Web page

HTML

Active X

Client

These are the most common

approaches to

scripting/programming

inside a web page, but there

are some others.

COMP303 JavaScript 1 Page 5

JavaScript Vs. Java

 ‘JavaScript’ sounds like it must be similar to ‘Java’…

 No - it is very different

 JavaScript is a scripting language embedded in an html
file

 Java can be used for ‘stand alone’ applets
which are embedded inside the page

 JavaScript can manipulate HTML elements

 Java applets are usually isolated from the web page

 JavaScript - no 3D graphics library/ threading/
networking etc

 Java - has lots of things like that

JavaScript Engines

 A JavaScript engine is the software inside the
browser which runs the JavaScript code

 The speed of the JavaScript engine determine
(almost) the speed of a browser as JavaScript
programs are getting larger and larger and more
and more sophisticated (e.g., gmail)

 Two open-source examples: SpiderMonkey and
Rhino

 Chrome v8 open-source JavaScript Engine

• Used in the Firefox browser • Used by various programs

COMP303 JavaScript 1 Page 7

The DOM

 JavaScript can be used to control all the
browser components, which includes the
web page, through a memory structure
called the DOM

 DOM=Document Object Model

 The DOM is a tree structure

COMP303 JavaScript 1 Page 8

Example Tree Structure DOM

 This image gives a rough idea of a DOM structure for
a browser after loading a web page

 We will look more at the DOM later

<html>

<head>

<title>A Simple Example Of Using JavaScript
</title>

<script language="javascript"
type="text/javascript">

<!--

document.write("Welcome!");

// -->

</script>

</head>

<body>

<p>

This is the first text line of the HTML page.

The browser will look at JavaScript which is in the head

part of the page before it looks at the first line of html text.

</p>

</body>

</html>

Example of a

Simple Web

Page Using

JavaScript

• JavaScript needs to be put inside <script> … </script>

• Here is a complete example, using 1 line of JavaScript

Enclose script content as a comment to hide it

from browsers that don’t understand JavaScript

Order of

Assessment

<html>

<head>

<title>A Simple Example Of Using JavaScript
</title>

<script language="javascript"
type="text/javascript">

<!--

document.write("Welcome!");

// -->

</script>

</head>

<body>

<p>

This is the first text line of the HTML page.

The browser will look at JavaScript which is in the head

part of the page before it looks at the first line of html text.

</p>

</body>

</html>

• This part of the web

page was assessed by

the browser first

• The browser saw there

was a direct

instruction to do

something, so it did it

• Then this part of the

web page was assessed

COMP303 JavaScript 1 Page 11

document.write()

 The instruction
document.write("Welcome!")

tells the browser to write the
word to the document, meaning
the web page

 The result is that those words
are added to the web page at
the point where the JavaScript is
executed

 The user can immediately see
the words in the web page

COMP303 JavaScript 1 Page 12

Simple Text Output – alert()

 For showing text to the user, a quick and easy
solution is to use alert() i.e.
alert("Welcome!");

• Alert is one of the three dialog
boxes supplied by JavaScript:

alert()

prompt()

confirm()

Basic Example

<html>

<head>

<title>A Simple Example Of Using JavaScript
</title>

<script language="javascript" type="text/javascript">

alert("Welcome!");

</script>

</head>

<body>

<p>

This is the first text line of the HTML page.

The browser will look at JavaScript which is in the head

part of the page before it looks at the first line of html text.

</p>

</body>

</html>

• Only this part has changed -

now we are using alert()

COMP303 JavaScript 1 Page 14

Simple Text Input – prompt()

 For getting input from the user, one easy-to-handle
way is to use prompt(), for example:

var user_name; // Declare the variable

user_name=prompt("What is your name?", "");

 In JavaScript it is not actually required to declare
a variable before you use it

 However, it is good programming practice

COMP303 JavaScript 1 Page 15

Combining Both Together

 Simple text input and text output

var user_name;
user_name=prompt("What is your name?", "");
alert("Welcome " + user_name + "!");

 Here the ‘+’ means string concatenation, not numerical
addition

 The choice between string or numerical handling is
automatically made by the JavaScript engine

This is the default
string which is shown
in the prompt box

COMP303 JavaScript 1 Page 16

Simple Selection – Confirm()

if (confirm("Select OK to continue, Cancel to abort"))

{

document.write("OK, I will continue");

…

} else {

document.write("Operation cancelled…");

}

COMP303 JavaScript 1 Page 17

Take Care When Programming

var user_identifier="";
user_identifer=prompt("What is your account name?", "");

alert(user_identifier);

 The above code would be happily executed, with
no execution error, or any other kind of error
shown

 However, the alert box would always display an
empty string regardless of what the user enters

About Semicolons in JavaScript

In JavaScript, this works:

function do_numbers(){

var result_str = "";

for (var i = 0 ; i < 10; ++i)

result_str += i + " ";

return result_str;

}

document.write(do_numbers());

This also works:

function do_numbers(){

var result_str = ""

for (var i = 0 ; i < 10; ++i)

result_str += i + " "

return result_str

}

document.write(do_numbers())

About Semicolons in JavaScript, Cont.

But this doesn’t work:

function do_numbers() {

var result_str = ""

for (var i = 0 ; i < 10; ++i) result_str += i + " " return result_str

}

document.write(do_numbers())

COMP303 Ways of Handling Web Page Code Page 19

COMP303 JavaScript 1 Page 20

JavaScript Variable Types

 Number: an integer/ floating-point number

 String: alphabet/ numerals/ any other characters

 Boolean: true or false

 Null: Consists of the value null

 Undefined: Consists of the value undefined

 Unlike most languages, when you create a variable you
don’t need to specifically declare what type it is

 Like most languages, you can have global or local variables

COMP303 JavaScript 1 Page 21

Example JavaScript Operators

 var x=10; result=x++; // result is now 10, x is 11

 var x=10; result=++x; // result is now 11, x is 11

 var x=10; result=x--; // result is now 10, x is 9

 var x=10; result=--x; // result is now 9, x is 9

 var x=10; result=-x; // result is now -10, x is 10

 result=10 % 3; // result is 1

 result=10 / 3; // result is 3.333333

COMP303 JavaScript 1 Page 22

Numerical Input

 When the user enters something into a prompt() box, it is a
string

 If you want to handle the input as if it is a number, you
need to first convert the string into a number. For example:

var user_age_text;

var user_age;

user_age_text=prompt("What is your age?, "");

user_age= parseInt(user_age_text);

if (user_age<=12)

alert("Young student!"); Convert the string into a number

Always returns a string value

COMP303 JavaScript 1 Page 23

Program Flow

 JavaScript has all the usual program
flow constructs, i.e.
 If / else / else if

 switch

 while { } / do { } while

 for ()

 It also has: break, continue – discussed later

COMP303 JavaScript 1 Page 24

Example Else If

var user_name;

user_name=prompt("What is your name?", "");

if (user_name.toLowerCase() == "dave")

alert("Great name!");

else if (user_name.toLowerCase() == "gibson")

alert("OK name!");

else alert("Your name isn’t great… never mind");

• The name is converted to lower case (i.e. "RoSSiteR"

becomes "rossiter") before it is compared

Example Switch
var user_name;

user_name=prompt("What is your name?", "");

switch (user_name.toLowerCase()) {

case "dave":

alert("Great name!");

break;

case "gibson":

alert("OK name!");

break;

default:

alert("Your name isn’t great… never mind");

break;

}

• Usually a ‘switch’

statement is more

efficient than several

if else statements

COMP303 JavaScript 1 Page 25

var response;

var finished;

finished=false; // At the start, we haven’t finished yet

alert("Rossiter is a great name.");

while (!finished) {

response=prompt("Do you agree?", ""); // input from user

if (response.indexOf("y") == 0) // First letter

// must be y

finished=true; // loop will now finish

}

Example While

• Search for ‘y’ in the user’s response

• What does indexOf() do?

• The loop is terminated if the first

letter is a ‘y’

• For example: yes, yea, yep, and y

COMP303 JavaScript 1 Page 27

Break and Continue

 Useful JavaScript commands for loop
control:

 break – to stop the loop and jump to the

command immediately following the loop

 continue – to skip the rest of the current

iteration

COMP303 JavaScript 1 Page 28

Break

var message = "";

var count = 1;

while (count <= 10)

{

if (count == 8)

{

break;

}

message = message +
count + "\n";

count++;

}

alert(message);

COMP303 JavaScript 1 Page 29

Continue

var message = "";

for (var x = 0; x <=20; x++)

{

if (x%2)

{

continue;

}

message = message + x + "\n";

}

alert(message);

• True if

x=1, 3, 5, …

COMP303 JavaScript 1 Page 30

Examples of Logical Operators

 Example of ! Not
if (!parseInt(prompt("At what age were

you born?",""))==0) alert("Crazy!")

 Example of && And
var response=prompt("Male or female?");

if ((response!="male")&&(response!="female"))

alert ("Huh??!");

 Example of || Or
var response=prompt("good, great or bad?");

if ((response=="good")||(response=="great"))

alert ("Me too!");

COMP303 JavaScript 1 Page 31

JavaScript Events

 Typically, events are caused by user interaction

 For example, the following would each cause an
event:

 moving the mouse over an image

 clicking on a button

 changing a value in a textbox

COMP303 JavaScript 1 Page 32

Example Events

 For keyboard input:

 onkeypress

 onkeydown

 onkeyup

• For mouse input:

– onclick

– onmousedown

– onmouseup

– onmousemove

• When an object is

loaded by the browser:

– onload

<html> <head>

<script language="javascript"
type="text/javascript">

<!--

function check_user_age() {

if (age_of_user() < 18)

alert("Please go to another web page.");

}

function age_of_user() {
var age_text, age;
age_text=prompt("What is your age?", "");

age=parseInt(age_text);

return(age);

}

//-->

</script>

</head>

Functions

<body onload=" check_user_age() ">

<h1>This is my
naughty home page….</h1>

</body>

</html>

COMP303 JavaScript 1 Page 34

Referring to Strings

 Use double quotes " " or single quotes ' '

 When you refer to a string within a string,
you have to use the other type of quotes for
the inner reference

 For example:
<body onload="alert('Welcome!')">

COMP303 JavaScript 1 Page 35

Handling Random Numbers

 Generate a random number like this:
random_number=Math.random();

 This produces a floating point value in the range 0 to
1

 The resulting range is [0, 1) - in other words, the
value of 1 will not be generated

 Multiply in order to get the range you want, i.e.
random_number=Math.random() * max_value;

 Math.floor(random_number) dumps the decimal
place – i.e. 12.97 -> 12

 We now have an integer random number in the range
[0, max_value)

COMP303 JavaScript 1 Page 36

JavaScript Objects

 Example 1:
var this_thing= new Object(); (No need to declare fields!)
this_thing.name = "demo field"; (This field is dynamically added)
this_thing.value = 303; (This field is dynamically added)

 Example 2:
another_thing = { x:3, y:4, z: 5};

does the same as
another_thing = new Object();

another_thing.x=3; another_thing.y=4; another_thing.z=5;

 Accessing all fields/properties in an object:
for (field in another_thing)

document.writeln(another_thing[field]);

COMP303 JavaScript 1 Page 37

JavaScript Arrays

 Example:
var squares = new Array(5);

for (var i=0; i<squares.length; i++)
squares[i]=i*i;

has the same result as
var squares = new Array(0, 1, 4, 9, 16);

 Examples of assigning values:
var arrayobj = new Object();

arrayObj[0] = "index zero";

arrayObj[10] = "index ten";

arrayObj.field1 = "field one";

arrayObj["field2"] = "field two";

 Arrays can be used like hashes

COMP303 JavaScript 1 Page 38

Take Home Message

 JavaScript is a powerful object-oriented language

 Processing capability not much different from Java, C++

 With more emphasis on user interaction (control of display,

mouse and keyboards) and security (restricted access to

client storage)

 No fancy features like multithreading, networking, etc.

 JavaScript runs on browsers and enables them to do

wonderful things

 We learnt simple user interaction (prompt and alert),

string manipulation, math (Math.random(), important

for games), simple event handling

 DOM is the common data model for client and server

(will be covered more in next set of slides)

